
	
	
Indie Microblogging
by Manton Reece

© 2024 Manton Reece

https://manton.org/

Creative Commons: You are free to share (copy and redistribute
the material in any medium or format) and adapt (remix,
transform, and build upon the material for any purpose, even
commercially). Please give appropriate credit back to the author.

https://creativecommons.org/licenses/by/4.0/

Cover photo: Indianapolis Union Station.

ISBN 978-1-7379965-3-8 (paperback)

ISBN 978-1-7379965-4-5 (PDF)

ISBN 978-1-7379965-5-2 (ePub)

Draft: 2024-01-05

	
	Table of Contents

Introduction

		What is microblogging?

		Uses for a microblog

		Mission to movement

		The way forward

Part 1: Rewind

		Penn Station

		Pulled away from blogs

		Leaving Twitter

		App.net

		WordPress and Tumblr

		Interview with Leah Culver

		Toward decentralization

Part 2: Foundation

		Domain names

		Syndication

		RSS for microblogs

		JSON Feed

		Introducing Micro.blog

		External blogs with WordPress

		Alternative platforms

		Micro.blog and feeds

		Part of the web

		Migration

		Blogging workflow

		Why indie microblogging

		Interview with Brent Simmons

Part 3: IndieWeb

		Permanence

		Silos

		Cross-posting

		Owning your content

		Microformats

		Building blocks

		IndieAuth

		Micropub

		Webmention

		Bridgy

		Blog archive format

		Interview with Tantek Çelik and Aaron Parecki

Part 4: Hypertext

		Photography

		Influence and reposts

		UI impacts behavior

		Using HTML

		Starting a new photo blog

		Sunlit and photo feeds

		Linkblogging

		Interview with Om Malik

Part 5: Decentralization

		Notifications

		Mastodon

		Pixelfed

		ActivityPub

		Your blog

		WebSub

		Indie readers

Part 6: Community

		Replies

		Harassment

		Misinformation

		Section 230

		Unattended algorithms

		Open gardens

		Discovery

		Popularity contests

		Banning users

		Interview with Jean MacDonald

Conclusion

		Breaking up Facebook

		Exodus

		The way out

		Sticking to the mission statement

		Special thanks

	

	
	Introduction

“If there's a book that you want to read, but it hasn't been written yet, then you must write it.” ― Toni Morrison

I was nervous as I drafted the email from my hotel room. A reception was starting downstairs at the Release Notes conference, held in 2016 at the Crowne Plaza hotel in the old Indianapolis Union Station. I would need to mingle, shake hands, try to remember everyone’s names even though I’m pretty good with faces and terrible with knowing what to say. I clicked send on the email to a handful of friends — announcing an early prototype for what would become Micro.blog, months before the Kickstarter campaign for the platform and this book — and then went downstairs, feeling the excitement of revealing something new.

Micro.blog has steadily improved over the years. It has come a long way since the first public beta in 2017, with changes rolled out on a weekly basis. The book companion to Micro.blog that you hold in your hands had faltered, though, with improvements kept in my draft but not shared with the world.

This book would’ve been more profound if it had been published in 2017 instead of 2024. The longer it took me to write it, the more well-understood the problems of massive social networks seemed to be with the general public. Years after Cambridge Analytica, the 2016 election, hate speech on Twitter, and Facebook CEO Mark Zuckerberg testifying before Congress, I started to wonder if I could even add anything unique to the conversation.

But for all the known problems, there remain very few proposed solutions. In the debate about the role of platforms, there are offshoots into new technologies, web history, safe communities, even antitrust law. These are threads that we need to tie together with a cohesive framework.

Big platforms like Twitter, Facebook, Instagram, and TikTok are built with small pieces of content. Lack of friction made posting easy. Amplification and engagement made creators influential. Native ads that are the same size as real content made platforms rich. That’s why the fix should also be rooted in small (micro) content: where it’s stored, who owns it, and how it flows across the web between much smaller, open platforms.

There's a conflict in the modern internet between the fast and the slow. It’s not the speed of networks or how fast a web site loads, though. It’s the pace of change.

Startups move quickly. They experiment. Facebook founder Mark Zuckerberg famously described Facebook's motto as "move fast and break things". Speaking at TechCrunch Disrupt in 2013 he talked about letting engineers run with an idea and quickly iterate, because they had a testing framework that measured new experiments. As long as a new feature met Facebook's metrics for whether people liked it or it generated more revenue:

What I really mean by "move fast" is that I want to empower people at the company to try things out, and I don't demand that every iteration of what we release is perfect.

Framed that way, moving fast doesn't sound so bad. But the web as a whole doesn't work that way. The standards process moves slowly. Clever ideas implemented on a personal web site take time to catch on and spread, because most sites are small.

It's because of this balance between the fast and the slow that a new social network like Facebook that seems at once exciting and probably harmless can have a profound negative impact over years. Massive social networks steamroll over the natural, steady evolution of the web, because a single large site gains an outsized influence over progress.

Today we face a web that is fundamentally broken. The web is increasingly centralized, corporate, and developer-hostile. Most writing happens on a small number of web sites that we do not control.

In 2012, Anil Dash wrote about the web we lost:

In the early days of the social web, there was a broad expectation that regular people might own their own identities by having their own websites, instead of being dependent on a few big sites to host their online identity. In this vision, you would own your own domain name and have complete control over its contents, rather than having a handle tacked on to the end of a huge company’s site.

Two years before his post, the first IndieWebCamp event was held. Founded by Tantek Çelik, Aaron Parecki, Amber Case, and Crystal Beasley, IndieWebCamp attendees had seen how the web was changing, the blogosphere fading away, and they wanted a return to simple, interoperable standards. The idea resonated immediately, but years later it still seems just on the edge of mainstream adoption.

In a conference talk at Web Directions in 2014, IndieWeb co-founder Tantek Çelik outlined what we could learn from old blogs and how to rebuild for the future, starting with the early days of blogging before silos took over:

In 2003 we kind of hit this moment of peak independent web. We kind of assumed that that was how it was always going to be. Everything was working; everyone had their own site. Why would we assume anything different? Well, what happened? Silos happened.

The most popular web sites today make sharing more approachable. Millions of people communicate online now because it's easier. Silos like Facebook and Twitter promised to make people's lives better and more connected, but the cost was stagnation for the rest of the web.

Twitter turned their back on developers. Instagram sold out and is full of ads. Snapchat and TikTok exist almost outside of the web, like so many new mobile apps built on web technologies but with accessibility from a web browser as an afterthought.

It's time for a return to what made the web great. This book is about how. It's both a history and a guide. How the web used to be, and how it should be again.

What is microblogging?

“The most valuable of all talents is that of never using two words when one will do.” — Thomas Jefferson

In her 2002 book The Weblog Handbook, Rebecca Blood introduced readers to the growing niche of web sites that focused on chronological posts. She wrote about what made a blog different:

No one wants to scroll down to the bottom of the page (or even the current day’s section) to see if any new content has been posted. With new content at the top, a visitor can see at a glance whether your page has been updated and easily begin reading your latest entries without any additional effort.

Spelling it out seems obvious today. We can similarly outline what microblogging is in a way that hopefully will be obvious years from now when indie microblogging is more common.

We can approach defining the term micro logging from two sides: specific rules for feeds and platforms, and high level goals, the spirit of indie microblogging that all blogs can share even when the details vary.

Wikipedia defines microblogging this way:

Microblogging is a broadcast medium that exists in the form of blogging. A microblog differs from a traditional blog in that its content is typically smaller in both actual and aggregated file size.

But that’s not quite specific enough. A microblog post should have these qualities:

		Should have a feed, usually RSS or JSON Feed

		Does not have an RSS item title.

		Contains short post text, usually 280 characters or less.

Not having an RSS item title might take some getting used to for mainstream blogging clients and readers. Most RSS apps assume that all posts have a title, even though titles are technically optional in the spec. But I think this is an important distinction because if you think about Twitter-like posting, it should be fast and convenient; making up a title first interrupts the flow of posting.

The specific rule for post length or which feeds you include can be useful. These should be thought of as more of a guideline than a rule, though — just something to shoot for.

We focus on microblogging because it’s the easiest form of web publishing. Centralized services like Twitter and Facebook took off because they had better, simpler interfaces.

If you stop reading after this page, here's what you need to know:

		Publish short posts and photos to your own web site, at your own personal domain name.

		Make sure your web site has an RSS or JSON feed, and add it to communities like Micro.blog.

		If you want to participate in larger social networks, post to your own site first and then copy the post to Twitter, Facebook, or Instagram.

		Massive centralized platforms create problems for society. By posting to your own site, you control your content, distributing it more evenly across the web and minimizing the power of big tech companies.

This might seem like too much work for most people. With many of today's blogging tools, it is. We must work simultaneously on open standards and on making software that follows those standards as easy to use as possible for everyone.

What we don’t want to do is reinvent the wheel with a new social media-like protocol that isn’t rooted in the web and blogs. Others have tried to come up with new systems for microblogging that don’t use blogs. But the word “blog” is part of “microblog” for a reason. They differ only in length. By using blogs, we get to keep everything that is valuable about blogging. We get to keep existing blog software and IndieWeb-friendly formats.

Blogs are web sites with reverse-chronological posts written by people. The newest posts are always at the top of the web site. They can be news sites, corporate sites, travel sites, photo sites, tech sites. They are often personal, with an individual's voice. Readers want to keep visiting a blog because there's a story, unfolding with each post. The passing of time is a fundamental element to what defines a blog.

This emphasis on time is even more obvious for microblogs. Microblogs are blogs with very short posts. Because short posts are easy to write, there are usually more of them. In the case of a microblogging service like Twitter or Micro.blog, friends' posts are combined together in a timeline.

In an open platform based on indie microblogs, posts in the timeline come from blogs at the author's own domain name. This helps distribute content across the web and bypasses the bottleneck of posting only through big social networks, reducing their influence:

[image:]

Recent posts are placed at the top of the timeline. Older posts fall to the bottom, and eventually drop off. With this focus on the new, some people consider microblogging ephemeral, but it doesn't have to be.

Indie microblogging is about taking ownership of our microblog post content. It's about reclaiming the definition of what a microblog is from Twitter. Microblogs and social networks are big components of the web — too important to be contained in such a small number of closed, centralized platforms.

An indie microblog is a blog that contains short posts at your own domain name. It can be hosted by multiple providers, but it is conceptually independent of any one platform. It's portable and you control it.

Uses for a microblog

“You donʼt know if your idea is any good the moment itʼs created. Neither does anyone else. The most you can hope for is a strong gut feeling that it is. And trusting your feelings is not as easy as the optimists say it is. Thereʼs a reason why feelings scare us.” — Hugh MacLeod, Ignore Everybody

Sometimes it’s hard to put words down. Staring at a large, empty text box from blog software that wants you to give your post a title, as if every thought is fully formed before you know what to say. Doubt and imposter’s syndrome creep in.

The solution is easier, quick posting. Just start writing without the pressure of getting it all right.

People who haven't been posting regularly to their own blog also often struggle with deciding what content should be on a social network and what should be posted to a microblog. My default is to post everything on my own site, and cross-post to other networks, which takes the guesswork out of where to post. But there are several types of content that are naturally well-suited to an indie microblog that you control.

Photos

Sharing photos is an important part of Micro.blog. I put a custom photo picker and filters in the original Micro.blog iOS app to encourage everyone to post photos to their blog, so that you end up with a great collection of your best photos at your own domain name. Because photos are square by default, they look great in the Micro.blog timeline, and with cross-posting Micro.blog can attach photos to your tweets or send posts to other social networks.

Some people on Micro.blog focus almost exclusively on posting photos, like Robert Brook. Some people have even created separate blogs just for their photos at their own domain name hosted on Micro.blog, like burk.photos. There’s a special section of our curated Discover section that features photos from more Micro.blog users.

We'll cover photos extensively in Part 4.

Linkblogging

Essentially two types of link blogs have evolved since the early days of blogging. The most traditional link blog can be seen in Dave Winer’s posts. These are links with a very short commentary. Many tweets are like this. In a way, this format is the purest form of microblogging.

The second type of link blog starts to fall outside the limits of microblogging. Instead of just including a URL, authors use a quote from the linked material as the foundation for the post. The majority of Daring Fireball posts adopt this format. While author John Gruber is known for his full essays, those longer posts are infrequent today. He keeps his site active by linking to other interesting essays and tacking on his own brief opinion.

Books

Micro.blog has a Goodreads-inspired feature called Bookshelves that helps you track what books you’re reading or want to read. When you’re done reading a book, a quick click on the “New Post” button will prepare a microblog post with the book name, author, and link to the book details. It’s an easy way to share your favorite books and keep everything on your own blog.

There’s also a books API and companion app for iOS and Android called Epilogue, plus third-party IndieWeb apps like IndieBookClub. If we put more of our content on our own blogs, services like Micro.blog can aggregate book data together, forming a more distributed version of centralized sites like Goodreads.

Travel blogs

Travel blogs tend to combine text about the trip and photos, with individual blog posts for days or major sections of the trip. This can be seen in microblogs like this one from Mary Hatfield as they travel and adventure across the world, but a microblog is also great for remembering short trips and vacations.

We designed our Micro.blog companion app Sunlit for these kind of travel posts. The main interface on iOS allows grouping text and photos from multiple days into a blog post.

[image:]

Travel blogs can be longer posts, or short check-in posts with just the venue name. This can often be automated. Many people use the service OwnYourSwarm to copy Swarm check-ins to a microblog.

Business blogs

A microblog can be used for a company's news updates or product release notes. For Micro.blog, we have news.micro.blog where we post about new features or server downtime. These posts are short and also easy to copy over to a company's account on social media.

One advantage for businesses is that unlike social media, a microblog can be completely branded with the company's web site design and domain name. Posts can also be included automatically in a company's main web site using Micro.blog's Sidebar.js script.

Conversations

Blog posts are a great way to get feedback about an idea. Conversations around a blog post can take the form of replies on Micro.blog, or comments on external blog posts like WordPress.

See Part 6 for more about replies and building communities.

Microcasting

Micro.blog is about making short-form content you own as simple to post as a tweet because we believe blogging should be easier. Podcasting should be easier too.

Everyone had a story to tell, but for some people it's too daunting to even think about needing to talk for half an hour. Microcasts are short-form podcasts. Creating a microcast is fun because it's much easier to record and edit than the longer podcasts we’re all used to.

Chet Collins has published a microcast where he shares bits from his day with his kids. He wrote on his blog about why a podcast is such a nice format for capturing these memories:

Audio recordings, in an open format, are about as future-proof as you can get. Even more than that, these recordings deliver the actual sound of my children’s voices, their laughter, and their unfiltered thoughts. They are the perfect time capsule of my children, recorded and preserved for the future.

Using a podcast essentially provides some structure, transforming audio snippets from everyday life into a format that can be easily reviewed later. It's more organized than a digital junk drawer of random video clips, which for most people are unlikely to ever be edited. Podcasts inherently have a narrator to give context.

…and everything else

What you had for lunch. The movie you just watched. If it's something that could go on Twitter or Facebook, it can be a microblog post at your own site.

Mission to movement

“Progress depends on our changing the world to fit us. Not the other way around.” — Halt and Catch Fire

Basecamp started as the Chicago-based 37signals, a web design company known for pushing back against accepted conventions. They used to say that copywriting is a form of user interface design:

Great interfaces are written. If you think every pixel, every icon, every typeface matters, then you also need to believe every letter matters.

The best products don’t just have marketing copy; they have a mission statement. They don’t just sell a tool; they sell a movement.

Sometimes our products are confusing to new users — a UI that is too different, or trying to do too many things. These failures are an opportunity to improve beyond just bug fixes. Instead of only explaining what the product does, how can we pitch it in a way that strengthens a community around the idea, spreading through members in a more meaningful way than we can by ourselves.

And unlike a one-way press release, a community is inherently two-way. Every mention of the idea is both marketing and feedback. Someone blogs about how they’re excited for the product, but also how they wish it had a certain missing feature. Someone in the press writes a review, but also with a list of pros and cons.

This cycle means the product gets better. And if we’re thoughtful in that first approach to marketing copy, then every blog post, review, and tweet that follows is laced with a little part of our mission statement.

Who doesn’t want to build products that resonate so well, that go from nice utilities or productivity apps to something our customers fall in love with?

Kyle Neath echoed this in a blog post, writing that it's about ideas, not products:

People want to be part of ideas. Being part of a company who builds a successful product is cool... but being part of an idea is a lot more attractive. If you can build a business where both your employees and your customers think they're part of an idea, you've created something special.

The venture capitalist (and blogger) Fred Wilson wrote about focusing on work that is inspiring and that can have an impact:

You must work on something that inspires you and others, you must work on something with a significant impact, and you must do it in a way that makes getting where you want to go as easy as possible and keeps you there as long as possible.

People are increasingly disillusioned with larger companies. When a company gets too big, that company inevitably forgets why they exist. Not even the greatest, mission-driven companies seem to be able to escape this fate. The only way to stay true to your roots is to stay small. And smaller companies will inherently discourage centralization.

It might seem that short and often ephemeral posts have trained us with short-attention spans. To see the movement we must look over a longer period at the collection of all those posts — not just our own posts, but the potential for microblog posts all across the web.

This book you're reading is longer than I had intended, especially ironic given that its subject matter is short posts. But the goal is big. It's not about any one new social network. It's about a new way of thinking about publishing on the web.

It’s not enough to have temporary, viral movements like #DeleteFacebook or outrage over Elon Musk’s latest meme tweets. We need something sustainable that permanently changes the narrative.

What is the mission for indie microblogging? There are four guiding themes in this book that we will keep returning to:

		Better features. Learning from the user interface innovations of social networks — both the good choices and what we can do better.

		Open standards. How the work of the IndieWeb and even older blogging APIs can improve interoperability and freedom on the web.

		Content ownership. Why nearly everything starts with personal domain names.

		Smaller social networks. The technical overview of Micro.blog, Mastodon, and pushback against massive social networks.

It's the combination of all four themes that will move the web forward.

The way forward

“Most important things in life are a hassle. If life’s hassles disappeared, you’d want them back.” — Hayao Miyazaki

The blog AltPlatform had published a number of articles about the open web and indie blogging. Brian Hendrickson wrote about emerging protocols from the IndieWeb and Mastodon, and how these standards could eventually reach a scale that would "flip the iceberg" to become the more dominant way we communicate online:

Open source tools like WordPress, 1999.io and Mastodon.social are creating many small networks of publishers, and popular tools like Twitter and Micro.blog could peer with them. If all of the social networks outside of Facebook interoperated at some level, they might eventually “flip the iceberg” and become the dominant form of social networking.

Compatibility between new blog-focused platforms could eventually become bigger than any one social network. This compatibility comes from open standards. (I'll talk more about the IndieWeb and Mastodon in parts 3 and 5.)

It is daunting to create a new microblog platform — to compete with Twitter and Facebook, to go up against more established companies with better funding — and creating a new social network from scratch usually does not work. The huge platforms are super-aggregators, ad-based with little cost to acquire content or scale, and difficult to compete with network effects.

For years many developers have wanted an alternative but have not been able to get mainstream traction. Developers and entrepreneurs with the best intentions, great talent, and a larger team than we have for Micro.blog.

So to flip the iceberg, we must start with a simpler goal: encourage more people to blog. We must play the long game, building deliberately so that the foundation will last for years.

It's not about leaving Twitter and moving to the next platform. It's about redistributing microblog posts across the web, with a diverse set of platforms.

This redistribution is already happening. Indie Map took thousands of independent blogs and started mapping the relationships as people use their blog to link and reply across sites. Instead of a concentration of users on a single site like Twitter or Facebook, users are spread out, posting at sites they control.

[image:]

Blogging at a personal domain name is a kind of investment in the future of the web. It's a statement that you value your own writing and are ready to contribute to making the web better.

This book is divided into 6 major parts:

		Part 1: Rewind takes us back to early social networks and blogging platforms. It also includes interview questions with Marco Arment about the early days of Tumblr, and a conversation with Leah Culver about Pownce.

		Part 2: Foundation outlines the basics of indie microblogging, with a quick-start guide for WordPress and how Micro.blog fits into the ecosystem of indie microblogs. There’s an overview of JSON Feed and an interview with NetNewsWire developer Brent Simmons.

		Part 3: IndieWeb is all about the IndieWeb movement. I’ll cover why we care about owning our content and the building block API standards of the IndieWeb. It’s capped off with an interview with IndieWeb co-founders Tantek Çelik and Aaron Parecki.

		Part 4: Hypertext covers the unique nature of web formats, focusing on photography, UI, and HTML.

		Part 5: Decentralization takes us to Mastodon, WebSub, and real-time notifications between blogs.

		Part 6: Community is about the intersection between blogs and platforms. The impact of harassment, misinformation, and politics on healthy communities. We end with a conversation with Micro.blog community manager Jean MacDonald.

Getting millions of new bloggers to post to their own site won't be easy. Nothing worthwhile ever is. It seems like a never-ending hassle to convince people to blog when Facebook onboards new users so effortlessly. But we've seen in the years since Micro.blog launched that this will work. There's no question that more people are blogging today because of Micro.blog and the larger IndieWeb movement, and we've only scratched the surface.

	

	
	Part 1: Rewind

"This device isn't a spaceship; it's a time machine. It goes backwards, forwards. It takes us to a place where we ache to go again. It's not called the wheel; it's called the carousel. It lets us travel the way a child travels — around and around, and back home again, to a place where we know we were loved." — Don Draper

I loved the old web. The simplicity, where knowing just a few HTML tags was enough to be at the forefront of web design. The playfulness, where experiments were not overshadowed by a fear of the future hanging over any attempt to try something new.

But this book is more than nostalgia. Before we can take the next step forward, we must first look back. It won't help the web to blindly reinvent the same platforms with the same problems.

Anything new is a reaction to what came before. I would not be writing this book if it weren't for all the social networks that have come and gone, and the bloggers who have stuck with publishing to their own site.

What can we learn from older platforms? What good ideas from blogs can we bring forward, resurfacing them into the modern web?

Tumblr and LiveJournal brought blogs together under a social graph. MySpace opened up the possibility of editing HTML and CSS to users who would never run a server. Pownce added a richer timeline of posts, events, and shared files. Google Reader provided a comprehensive UI for RSS feeds and centralized comments. And of course Twitter and Facebook made posting easy.

Things were moving quickly. Years seemed to pass in a blink, until much of the naive enthusiasm for the web — the tinkering and the blog-based foundation — had slipped away to be supplanted by Twitter and Facebook at scale. It was gone before we noticed what had been lost to expired domain names and lapsed dreams of a more connected web.

Penn Station

“The station structure, designed after the Qual d'Orsay, Paris, but twice as large, will be 1,500 ft. in length by 500 ft. in width, three decked, inclose 25 tracks at tunnel level, which will be approached by gradual carriage drive and walkway.” — The Brooklyn Daily Eagle Almanac, 1906

When my family was visiting New York City a few years ago, we took a train out of Pennsylvania Station on the way up to Montreal for the second half of our vacation. It was raining a little as we walked from the hotel, but I thought we'd still have no trouble finding the station. After a few minutes we gave up and had to ask someone where the entrance was.

We couldn't find it because it looked like every other street corner in Manhattan. But it wasn't always like that. It used to look like this:

[image: Pennsylvania Station in the 1910s]

The New York Times recently described the old Penn Station this way:

With its swarming crowds and dust motes dancing in shafts of smoky light, the station was catnip to midcentury photographers, filmmakers, artists and architects. It was the architectural embodiment of New York’s vaulted ambition and open arms.

In the 1960s, facing declining train usage and financial problems, the Pennsylvania Railroad sold the rights to everything above ground and the incredible station pictured above was demolished. It was only afterwards, when it actually happened, that everyone fully realized what they had lost. Determined to not let other beautiful architectural landmarks get destroyed, the city passed a law to restrict similar demolition. Grand Central Terminal was preserved because of the lesson learned from letting Pennsylvania Station go.

I was thinking about this story — failing to do the right thing, but applying that knowledge to the next thing — while re-reading Marco Arment's excellent post on the future of podcasting. In it, he lays out the technical details for how podcasting works today, and makes the case for leaving it alone. I especially like this part, on his determination to keep Overcast a sort of pure MP3 client:

By the way, while I often get pitched on garbage podcast-listening-behavioral-data integrations, I’m never adding such tracking to Overcast. Never. The biggest reason I made a free, mass-market podcast app was so I could take stands like this.

I should have realized it earlier, but I don't think I really connected all of Marco's goals with Overcast until Daniel Jalkut and I had him on our podcast Core Intuition, episode 200. We talked about many of these same themes as Marco was finishing up Overcast 2.0. Marco talked about larger podcast software teams that are trying to lock down podcasting:

They're trying to lock it down for themselves. Usually it's: let's build a closed platform, and our technology can power your podcasting. And it's like all these buzzwords that really just mean we are trying to lock down this open medium to a centralized close thing that we control. And then we are the gatekeepers, and we have all the power, and all the money flows through us.

Everywhere I looked there seemed to be a debate about the role of podcast aggregators like Spotify and Apple. There was a great discussion on Upgrade with Myke Hurley and Jason Snell about this. It started about halfway through, with Myke describing the potential for Apple to lock down podcasting:

For there to be more data about listeners — like to know stuff about where you are in the world, demographic information, how old you are, to know if you've listened to the whole show, what parts you've skipped — for Apple to know this information, they would have to kind of lock down a lot of the way that podcasts work. They would probably need to be hosting the files and reserving them on their own. They would need to do more tracking.

And in a response to Marco on MacStories, Federico Viticci wrote about the parallel trend in the web industry toward centralized services like Facebook and Medium that allow "content professionals" to monetize their writing. In doing so, those writers give up many of the benefits of the open web:

But the great thing about the free and decentralized web is that the aforementioned web platforms are optional and they're alternatives to an existing open field where independent makers can do whatever they want. I can own my content, offer my RSS feed to anyone, and resist the temptation of slowing down my website with 10 different JavaScript plugins to monitor what my users do. No one is forcing me to agree to the terms of a platform.

While the open web still exists, we dropped the ball protecting and strengthening it. Fewer people's first choice for publishing is to start a web site hosted at their own domain. Like the destruction of Pennsylvania Station, sometimes you only know in hindsight that you've made a mistake. We were so caught up in Twitter and Facebook that we let the open web crumble. I'm not giving up — I think we can get people excited about blogging and owning their own content again — but it would have been easier if we had realized what we lost earlier.

Reading posts like Marco's and Federico's, and listening to Jason and Myke on Upgrade, I'm convinced that podcasting will remain open because as a community we know better now. We can see the dominance of YouTube controlling nearly all web video. We can learn from the mistakes with the web and the threats of closed platforms, making sure that podcasting is preserved as a simple technology that no one controls.

And we can take a fresh look at all the blogging platforms that have come before, learn from what worked well with previous social networks and what failed, and recommit to bringing the best parts back to today's web. This time, prepared for the future.

Pulled away from blogs

“You were the captain of a ship, sailing aimlessly through the wilds of the Web. Occasionally you would drop anchor and stop to peruse all the great content that netizens were putting out into the world.” — The Web Is Fucked

If you wanted to publish anything on the web in the early 2000s, you created a blog. Blogs had personality. People commented on each others blog, helping build loose communities. They met in person at events like the SXSW Interactive conference.

Slowly, the rise of larger platforms pulled attention away from blogs. More and more former bloggers posted their content on social networks first.

Anil Dash was interviewed by Matt Mullenweg on the Distributed podcast, talking about blogging less often because there were other venues to post to like Twitter:

the biggest thing chipping away at it is having other venues and other platforms

When I talked to Tantek Çelik for the interview in Part 3, he acknowledged this period as Twitter was taking off where even he stopped blogging:

Just even personally, the last blog post I wrote on my old blog was in August of 2008. I did not have anything on my own site in 2009. 2009 was a really weird transitional period, because I both saw that happening and I saw it happening to myself.

By 2010, you could see this pattern across the web. Many of the pioneers of blogging had either completely stopped posting, or cut back their posts to longer essays a few times a year.

What happened? Social networks were simply easier to post to, and the feeling of engagement in getting likes or replies was more compelling than publishing into the void of the blogosphere, wondering if anyone was listening.

At the same time, blog comments were getting harder to manage. There was more comment spam. Bloggers started pointing their readers to social networks if they wanted to reply to a post, effectively offloading user registration and moderation to other centralized platforms.

It wasn't a stretch to embrace social networks because bloggers were already actively using some centralized platforms, like Flickr. If a blog was already leaning on Flickr for photo storage, it was a small step to go to other platforms for short text posts.

Before Twitter was large enough and stable enough to dominate centralized microblogging, several competing social networks were launched with a focus on microblogging.

Twitter now has over 300 million monthly active users. Centralized platforms have become a winner-take-all game because you can't move your followers. Leaving Twitter or Facebook means starting over.

Earlier it wasn't clear Twitter would dominate. In 2007, Twitter was still small enough that you and all your friends could try a new service without feeling like you were leaving everything behind. Twitter was often flaky, with the “fail whale” as a reminder that maybe a better, more stable network existed elsewhere.

There was Pownce with private posts and more sharing options. Ello and App.net as reactions to Twitter’s developer-hostile API. LiveJournal, MySpace, Jaiku, and Diaspora.

Every one of these competitors had their own unique take on microblogging. How long should a post be? Should the friends model by asymmetrical, so anyone can follow anyone, or require approval of friend requests?

In 2009, Facebook overtook MySpace in unique visitors in the US. No other social network would reach the same scale until Instagram.

Google Reader had become the most popular platform for subscribing to RSS feeds. It was free and easy to use, but aspects of its centralized nature such as comments and favorites were stuck in a silo, difficult to migrate away from.

Paid services that are as popular as Google Reader aren’t usually discontinued as Google Reader was, but Google Reader wasn’t a paid service. It’s because Google Reader was free and ad-supported — but just a small part of Google’s business — that they were able to drop it.

When Google Reader shut down, there was no migration plan to other RSS readers. Marco Arment, early Tumblr developer and creator of the podcast app Overcast, blogged in 2013 that developers needed to move quickly to fill the void left by Google, standardizing on a Reader-compatible API that could work with most apps without major API changes:

We need to start simple. We don’t have much time. And if we don’t do it this way, the likely alternative is that a few major clients will make their own custom sync solutions that won’t work with any other company’s clients, which won’t bring them nearly as much value as it will remove from their users.

A common API didn’t happen. Instead, we do have a few popular feed reader platforms like Feedbin and Feedly that tried to fill the void. Apps like NetNewsWire and Reeder have been updated to support multiple APIs.

This modern feed sync ecosystem might be healthier than one dominated by a single player, but it created friction and doubt in what people should move to. It was easier to just use Twitter and convince yourself you weren’t missing anything from RSS feeds.

Blogs survived in the background because they were still a better fit for people who wanted to own their content, carving out a little space for themselves on the web. The death of Google Reader was a reminder to indie-minded bloggers that ad-based platforms had advertisers as customers, not users.

Leaving Twitter

“There aren't many companies that get to this level. And there aren't many founders that choose their company over their own ego.” — Jack Dorsey’s resignation letter

The first version of Twitter used a database server with auto-incrementing numbers to represent the ID for each record. Years later such a simple relational database would present scaling problems, but in June 2006 when I joined, this database design was just how you started building a web app. For every new record added to a table representing users in the database, the ID for that record is incremented, giving the next user a higher user ID.

Because this number is available in the Twitter API and shown in some apps, you could see when someone joined the platform. I was the 897th person to sign up on Twitter. For years I was proud of this low, 3-digit user ID. I loved Twitter and would excitedly describe the platform to people who were first hearing about it.

In 2008 in Chicago, I was at the C4 conference for Mac developers. When the conference ended I shared a cab to the airport with Alex Payne, who built the first Twitter API. I was so excited about the potential for the platform that I probably had a dozen ideas for Twitter apps. Alex and I sat at a cafe at the airport, waiting for our respective flights, and talked about the future.

I built several third-party apps for Twitter after that. Tweet Library was an iOS app for keeping an archive of your tweets and organizing tweets into collections. Tweet Marker was an API that other apps could use to sync the timeline scroll position across apps.

John Gruber wrote in 2009 that Twitter was perfect for experimenting with new apps:

There are several factors that make Twitter a nearly ideal playground for UI design. The obvious ones are the growing popularity of the service itself and the relatively small scope of a Twitter client. Twitter is such a simple service overall, but look at a few screenshots of these apps, especially the recent ones, and you will see some very different UI designs, not only in terms of visual style but in terms of layout, structure, and flow.

When I announced Tweet Marker in 2012, there was a vibrant Twitter developer ecosystem. It was about to erode. Just a couple months later, Twitter announced their infamous 4-quadrant chart, discouraging certain types of Twitter apps.

[image:]

In one corner of the chart were the apps Twitter wanted to see: business and analytics apps. In another corner were the apps they didn't care about: traditional clients, often the primary interface that people used to access Twitter on iOS and Android . Twitter blogged:

That upper-right quadrant also includes, of course, "traditional" Twitter clients like Tweetbot and Echofon. Nearly eighteen months ago, we gave developers guidance that they should not build client apps that mimic or reproduce the mainstream Twitter consumer client experience. And to reiterate what I wrote in my last post, that guidance continues to apply today.

Twitter was also limiting the number of auth tokens an app could have:

Additionally, if you are building a Twitter client application that is accessing the home timeline, account settings or direct messages API endpoints (typically used by traditional client applications) or are using our User Streams product, you will need our permission if your application will require more than 100,000 individual user tokens.

In 2009, before Twitter had their own official Twitter app, developer Buzz Andersen and designer Neven Mrgan shipped an early third-party Twitter app, Birdfeed. Buzz was actively working on Birdfeed through Twitter's transition of their API from simple password-based authentication to OAuth, which required apps to register with Twitter.

Buzz said in a tweet:

Twitter isn't just enforcing OAuth for technical reasons: it's a way of taking control of the platform.

Removing RSS feeds followed the same playbook. There used to be RSS feeds from Twitter for reading a user’s timeline. Without feeds and without open access to the API, Twitter could make the official apps the prominent way to use Twitter, driving up engagement and ad revenue.

An email from Ryan Sarver showed part of how Twitter was changing as a company, refocusing from building a network to selling a product. Reading between the lines, it seems that to effectively sell ads, Twitter felt they needed to control the user experience. On Twitter clients:

Developers have told us that they'd like more guidance from us about the best opportunities to build on Twitter. More specifically, developers ask us if they should build client apps that mimic or reproduce the mainstream Twitter consumer client experience. The answer is no.

Then over the weekend, Ryan clarified: “we are saying it’s not a good business to be in but we aren’t shutting them off or telling devs they can’t build them.”

IFTTT — If This, Then That — was a popular way to connect different platforms together, and it depended on open APIs. IFTTT was a useful tool that helped people do more with Twitter, even if they weren't developers. Turning off IFTTT support was the last straw for me personally because the decision seemed to encapsulate everything that was wrong about Twitter's direction.

Matthew Panzarino wrote at The Next Web about how IFTTT removal was a “red alert” to developers:

This means that many third-party developers who thought that their complimentary services, which did not duplicate the features or feel of clients at all, were safe under the new rules will have to take a very hard look at their apps.

I had become disillusioned by this developer-hostile attitude, where third-party apps were supported only if they fit within Twitter's business model. App.net promised a better vision, but faded away. I experimented with posting short posts on my own blog where they could outlast any silo.

The more I posted to my blog, the more regret I had about all those years giving Twitter power over my own content. As Marco Arment wrote in 2014:

Twitter started out as a developer-friendly company, then they became a developer-hostile company, and now they’re trying to be a developer-friendly company again. If I had to pick a company to have absolute power over something very important, Twitter wouldn’t be very high on the list.

Meanwhile, Twitter had gone mainstream. Alex Payne had left the company and Twitter was much different from a business and leadership perspective by the time the rest of the world started paying attention. Thousands of employees worked at Twitter. How many of them had experienced the early days of following friends’ tweets via SMS, when the service seemed genuinely new and important? The future had arrived but it was full of hashtags.

The unique tragedy with Twitter’s changing attitude toward developers is that so many of Twitter’s early innovations did come from third-party developers. The word tweet, the first use of a bird icon, and even the character counter started in Twitterrific. Twitter's new leadership displayed an incredible disrespect for the value developers added to both the ecosystem and core platform.

So I stopped posting to Twitter in 2012. It was many things. The limits on user auth tokens, which had already killed a few popular third-party Twitter apps; the problems with shutting down IFTTT recipes; the guidelines that restricted how you could use your own tweets.

I knew leaving would be difficult, so I set up a series of posts to discourage my future self from ever joining again. My final tweets were timed to go out on the anniversary of Steve Jobs’s death. They’re a collected moment, a tribute to both Steve and how great Twitter could be. I like that they’re forever pinned at the top of my profile page.

Years later, when others would leave Twitter because of the chaos caused by Elon Musk’s acquisition, and finally his decision to shut down third-party Twitter apps, some people would tweet their final goodbyes capturing all of that rage and frustration. My last tweet wasn’t like that. It was both a goodbye and a memory of what had made Twitter special. I wanted to highlight the good parts of Twitter because there were so many people causing trouble on the platform. For every beautiful tweet, there was hate and harassment and negative tweets and sarcasm and snark.

Overlapping the developer-hostile attitude was a growing realization that Twitter was overwhelmed with managing the community. Hate and harassment spread mostly unchecked. Something about the short, 140-character posts seemed to bring out the worst in people. (I'll cover community and replies in more detail in part 5.)

And then in 2018, the evolution of the Twitter API away from traditional client developers started becoming more real. In a blog post announcing the change, Twitter outlined how they would retire older APIs, moving to new APIs with a different pricing structure that made little sense for traditional Twitter clients:

We built a migration guide to assist in the transition from Site Streams and User Streams to the Account Activity API. As a few developers have noticed, there’s no streaming connection capability or home timeline data, which are only used by a small amount of developers (roughly 1% of monthly active apps). As we retire aging APIs, we have no plans to add these capabilities to Account Activity API or create a new streaming service for related use cases. Home timeline information remains accessible for developers via the statuses/home_timeline endpoint.

With the API more limited, there was less incentive to build fun tools that worked with Twitter. Tim Haines wrote about how Twitter deprecating the streaming API led him to shut down his service Favstar:

Twitter wrote that they’ll be replacing this with another method of data access, but have not been forthcoming with the details or pricing. Favstar can’t continue to operate in this environment of uncertainty.

It had taken nearly 6 years, but it felt like 2018’s API changes finally wrapped up the work that started in 2012. The apps that are possible with the new Account Activity API are exactly the apps that were encouraged in those other quadrants. The pricing made no sense because it wasn’t designed for traditional Twitter apps like Twitterrific and Tweetbot.

Twitter’s history has been tumultuous. Jack Dorsey as CEO was out, then back in. The API was open, then closed, then more open again. And all through it, Twitter’s features hadn’t changed much until recently.

Then In 2022, Elon Musk bought Twitter. Massive layouts followed, leaving very few people to manage the API. There was a series of mishandled feature rollouts. Native third-party apps were completely cut off from the Twitter API, and even basic API access was moved to paid plans.

Dave Winer blogged about the Twitter API changes:

Corporate platforms always fail, given enough time. The Twitter API had a good run. Now the deck is clear, and there’s room to make some new stuff, or just take a break and smell the roses a bit, or go for a bike ride. 🤪

In the long run, the open web will be better off without Twitter. There is renewed interest in decentralization.

Many people blamed Elon Musk, and it became a convenient narrative to assign any failure to his leadership. The problems had started much earlier, though. Ben Thompson discussed this on the Sharp Tech podcast:

Part of the irony of everyone getting upset about Elon Musk killing all the third-party Twitter apps is that that’s what Twitter’s management should have done a decade ago. If you’re going to go in that direction, go in that direction. Instead they didn’t have the guts to sort of follow through in their strategic decision to its logical endpoint.

I stopped posting to Twitter in 2012 exactly because of this strategy. Elon had greatly accelerated what was already the path for Twitter fading into silo irrelevance. I wish I could come up with a less violent analogy, but what comes to mind is Twitter leadership in 2012 loading the gun and pointing it at third-party apps, but it wasn’t until 2023 that anyone pulled the trigger.

Elon deservedly gets most of the blame for Twitter’s recent chaos. But Twitter wasn’t going to last forever under any version of its clown car leadership over the last decade. In the long run, we will be thankful that Elon is effectively putting the company out of its misery. We’re going to see innovation on the open web as third-party developers realize they are the ones who have actually been given new life.

And people are realizing that as unimaginable as it first seemed to not use Twitter, once you cut it out of your life it’s fine. Other networks like Mastodon and Threads take its place, or private chats with friends, or other hobbies. Robin Sloan captured this beautifully:

The speed with which Twitter recedes in your mind will shock you. Like a demon from a folktale, the kind that only gains power when you invite it into your home, the platform melts like mist when that invitation is rescinded.

Even the name itself and the bird branding are gone. The letter X feels like an appropriate placeholder for the platform’s grave. Here lies a dying platform. X marks the spot where it used to be.

The Twitter founders had stumbled onto something world-changing. The momentum of a unique idea carried them for years, even flawed, even as they lost their way. For indie microblogging to succeed, we must be more thoughtful and deliberate about the future.

App.net

“Perhaps you think that Twitter today is a really cool and powerful company. Well, it is. But that doesn’t mean that it couldn’t have been much, much more.” — Dalton Caldwell

If the first wave of alternatives to Twitter was as Twitter was still growing, the second wave of alternatives to Twitter came later, as Twitter was using their dominance to restrict the early openness to developers, and struggling to deal with harassment and other community issues on the platform. That period is best represented by App.net.

App.net co-founder Dalton Caldwell wrote an open letter to Mark Zuckerberg in 2012. Dalton described a meeting he had at Facebook where executives made clear that what Dalton was building was similar to Facebook's App Center product. Facebook had to control it, in Dalton's view, because of ads:

Mark, I don’t believe that the humans working at Facebook or Twitter want to do the wrong thing. The problem is, employees at Facebook and Twitter are watching your stock price fall, and that is causing them to freak out. Your company, and Twitter, have demonstrably proven that they are willing to screw with users and 3rd-party developer ecosystems, all in the name of ad-revenue. Once you start down the slippery-slope of messing with developers and users, I don’t have any confidence you will stop.

Facebook suggested they could compete with Dalton's product or buy his company. Dalton said he'd rather reboot his company than be acquired. That reboot became App.net.

Even before App.net was fully funded, they released a prototype Twitter clone called "Alpha" as a test for their new API. The API was modern and well-designed. Some features that might be left to third-party developers to extend, like my Tweet Marker API for timeline syncing, were built in as core parts of the API.

App.net further embraced developers through in-person hack days and a developer fund that paid third-party developers based on usage in their apps. This lessened the risk of jumping into a new platform, making sustainability more of a possibility for new apps like Netbot, a port of the popular Tweetbot to App.net.

You could add blog feeds to App.net for "automatic" posting to App.net, but fundamentally the service was not structured around integrating with external blogs. There were no domain names for your content.

Dalton Caldwell wrote about App.net supporting open standards, without necessarily basing the API on those standards:

Activitystrea.ms Atom & JSON feeds, as well as RSS feeds, of public posts for individual users, hashtags, etc. (Note that this is different from making them the foundation of our read/write API, which we have decided not to do)

There were minor differences to Twitter, such as a longer 256-character post length, but also deeper additions, such as annotation data, channels, and file storage. These API features enabled building new types of apps. Location check-in apps like Ohai by Steve Streza, which by using a common API could share data with other location-based apps, and chat apps like Whisper, which was spun off of the Riposte iOS client.

Streza blogged about these benefits in a post about Ohai 1.0 in 2013:

This means other developers could build apps that recognize your journal. So, if the developer of your favorite camera app adds support for Ohai journals, they could save those photos into your journal. Then, the next time you open Ohai, those photos are available. Other developers could build journaling apps for other platforms like Android, or even write competitive apps for iPhone.

The API was so flexible that the types of apps grew beyond what we were expecting as a Twitter-like platform.

I believed at the time that the next great app for App.net would come from the community, the developers who were passionate about the API's potential, just as early developers like Iconfactory who took a risk on Twitter years ago are still having an impact on that service today. The next great app would come from the developers who see App.net as a way to build new things.

I was working on an app like that. It uses the App.net API, but not the timeline. It takes pictures, but isn’t really a photo app. It integrates with Ohai, but isn’t another location check-in app. It renders beautiful maps throughout, but isn’t about navigation. Some of the features I’m most proud of in the app wouldn’t be the same without App.net.

There’s no way to know what apps will resonate with the mainstream, and which will remain niche or failures. But to have any hope of success, you have to start. You might even have to take a risk on a new platform if you want to build something new.

The promise of App.net was bigger than one type of app. App.net wasn't just a blank slate; it was an amplifier. It was waiting to power the next new idea and help it grow into something big, but it could only wait so long.

Two years later the experiment was over. Dalton announced that subscription revenue was not enough to continue with a full-time staff, and App.net would be in maintenance-mode only. A few years after that, the service was completely shut down.

In an article for Wired, written a year into the App.net launch when many people still had great hope for the platform, Mat Honan said something was missing from App.net:

But there’s still something missing, that seems totally obvious: a game. App.net needs a Dots or a Candy Crush or a Words With Friends that plugs into its social sphere. Something that isn’t just useful, but fun. Something wonderful.

Something was missing, but not a game. The App.net team got so much right — the early crowdfunding, the well-designed API, the developer story — that I didn't notice what they had left out until much later. All data lived at app.net URLs, and when the platform was gone, all the posts and data went with it. There was no way to own your content.

To learn from App.net, we should be inspired by its rich APIs, and especially its developer-friendly ecosystem. But it was too centralized.

WordPress and Tumblr

“The true meaning of life is to plant trees, under whose shade you do not expect to sit.” — Nelson Henderson

Matt Mullenweg’s legacy is deeply entrenched, with bits that he coded or advocated for spread throughout the web. Way back in a blog post in 2003, Matt wrote about his “dilemma” to find the best software to run his blog:

Fortunately, b2/cafelog is GPL, which means that I could use the existing codebase to create a fork, integrating all the cool stuff that Michel would be working on right now if only he was around. The work would never be lost, as if I fell of the face of the planet a year from now, whatever code I made would be free to the world, and if someone else wanted to pick it up they could. I’ve decided that this the course of action I’d like to go in, now all I need is a name.

That name was WordPress. You can see in that post some of the principles that would remain with WordPress for nearly 2 decades: openness and longevity that still guide Matt’s company Automattic today.

After b2 was forked to create WordPress, Movable Type and WordPress were vying for popularity. One static, one dynamic. One Perl, one PHP. Although different approaches, together they cemented the idea of a blog database schema that has fields for title, body, categories, and keywords.

In recent years, WordPress has drifted away from its roots in blogging. When I attended a WordCamp in 2017, no one was talking about blogs. It was all about using WordPress as a full CMS.

WordPress’s Gutenberg block editor has also captured most of the development attention in the WordPress community, completing the shift away from simple, text blog posts to richer, full web pages. Gutenberg represented a multi-year vision from Mullenweg to make WordPress’s default editor competitive with modern blog platforms like Medium.

While WordPress was growing to become an even more capable full web site editor, Tumblr launched trying something different. In 2005, Jason Kottke blogged about first discovering tumblelogs:

A tumblelog is a quick and dirty stream of consciousness, a bit like a remaindered links style linklog but with more than just links. They remind me of an older style of blogging, back when people did sites by hand, before Movable Type made post titles all but mandatory, blog entries turned into short magazine articles, and posts belonged to a conversation distributed throughout the entire blogosphere.

Tumblr was inspired by early tumblelogs as founder David Karp realized there was no simple, hosted service with a focus on tumblelogs. Tumblr was a microblogging platform before microblogging was a coined term. The new twist in Tumblr’s UI was post types: start a new post as a link, quote, chat, or photo. The UI adapted to the post type, with most types not using a post title field.

Lead developer and CTO Marco Arment blogged in 2007 about potential self-hosted competition and the trade-offs for centralized hosted platforms like Tumblr:

Some people just don’t feel comfortable having their data and services in someone else’s hands, while most people don’t want to (or can’t) host, maintain, and upgrade web software themselves. There are also different feature sets: installable software is more easily customizable with plugins and source modification, while hosted services can more eaisly provide community and directory features.

This ease of use was a key part of Tumblr’s growth. Tumblr attracted a diverse, large user base full of both traditional-looking blogs and lighthearted niche topics.

I reached out to Marco Arment to ask some questions about the early days of Tumblr for this book.

Manton: What was it like when Tumblr was just you and David Karp?

Marco: It started as most projects did at the time: building a web app, showing it to our friends, and having a few people try it out. Tumblr was one of a handful of projects we were working on at the time as a consultancy, with the other contracting projects paying the bills to enable us to experiment.

Marco: David and I worked very well together. In addition to being a great front-end developer and designer, he’s also enough of a programmer that he could build everything himself. But he was also wise enough to know when he’d reached the limit of his skills and should hire a specialist, and I was that specialist for his lower-level programming needs. He was able to focus more on the design and front-end coding, while I made everything fast and scalable behind the scenes, but he was still technical enough to do a significant amount of coding himself, appreciate and manage my work, and ask insightful and provocative questions.

Marco: We kept Tumblr as just the two of us for an unusually long time, which let us keep costs down and iterate very quickly. In retrospect, and I think he’d agree, we probably should’ve hired more people sooner. But we were both very young and very busy — a combination that hides the need to expand a team and provides no time with which to do so.

Manton: Were there any early clues that Tumblr would become so popular?

Marco: We had a few friends using it from its inception in late December 2006, but it really took off with Gina Trapani’s Lifehacker article in March 2007. From that day forward, growth was constant and aggressive — I forget the exact numbers, but I think it was in the ballpark of 20% growth per month.

Marco: When I was there (2006–2010), it felt like a great accomplishment for a small team and kept us very busy, but I never imagined us being a peer to the “big” social networks or publishing tools. We always felt like the independent underdogs in New York, making the alternative to the Silicon Valley startups for other eccentric nerds like us.

Marco: Ultimately, most of Tumblr’s popularity came after my departure in late 2010. Most Tumblr retrospectives I see in the press are written by people who joined after I left, about events that happened after I left, involving people I never worked with.

Marco: They usually don’t even realize or acknowledge that my era there existed. (Everyone thinks Tumblr started around the time they joined.) But it was an amazing ride, an era of my life that I look back upon very fondly, and probably the most exciting and popular thing that I’ll ever work on.

Manton: You wrote some on your blog in 2007 about Tumblr’s dashboard and trying to automatically find blogs to show people, to help discovery for new users, while also flagging spam. What kind of tools did you build to automatically catch problems? At what point did Tumblr need a larger team to keep up with content moderation?

Marco: Tumblr started as a blog-publishing tool with no social features, so in the earliest days, discovery and promotion were very low priorities. As it grew, the social features grew with it and eventually became what people knew Tumblr for, but they were very rudimentary in the beginning.

Marco: I don’t even remember what the discovery system was in the post you referenced, but the imminent replacement I teased was most likely Tumblr Radar, a grid that displayed the most popular recent posts. (Digg was very big then, and this was effectively a mixed-media version of it.)

Marco: Radar’s posts were only displayed after human approval — mine, for a while. On my train ride to work each morning, I’d use a cellular-tethered laptop to browse a back-end list of the most popular posts and manually approve whatever seemed appropriate for a general audience.

Marco: Our first additional employee was Marc LaFountain, who handled customer support and community management. At some point, I believe we passed this role along to him.

Marco: Spam wasn’t a big issue for the first few years because we were careful not to create any incentives for spammers. To deal with the few rudimentary issues we had, I just wrote some simple heuristics that prevented most automated spam and flagged any suspicious accounts for review. I did this review at first, then added it to Marc LaFountain’s duties.

Marco: The role of content moderation on a publishing platform today is much more broad, challenging, and important than what we had to deal with in those early years. Most of the job back then was spam prevention and a handful of copyright claims. In retrospect, we were very lucky that our users in that era were mostly nerds and artists, and we didn't have the challenges of today’s social networks. (This is another area that obviously changed significantly after I left in 2010.)

Manton: For all these years Tumblr has stayed true to its roots of making it easy to quickly blog not just text but also links, quotes, or photos. Reblogging on Tumblr even predates Twitter's own retweets. Did y’all ever feel pressure from WordPress and other blogging tools to make longer, essay-like posts a bigger part of Tumblr?

Marco: Not at all.

Marco: We always saw blogging tools like WordPress as indirect competition at best, almost as if we were a magazine publisher and they were a book publisher. Traditional blogs almost seemed like a different medium with very different needs and goals.

Marco: People could (and did) write long-form posts on Tumblr, but it was never optimized for them, and that allowed us to build great features designed for short content. Similarly to how an RSS reader is a pretty poor way to read Twitter, and Twitter is a pretty poor way to read long-form writing, what we were building was different enough in both creation and consumption style that we never saw traditional blogs as direct competition.

Years later, when Yahoo! acquired Tumblr, CEO Marissa Mayer said that Tumblr and Yahoo! shared “a vision to make the Internet the ultimate creative canvas by focusing on users, design – and building experiences that delight and inspire the world every day.”

But the acquisition’s potential as part of Yahoo! never went anywhere. Marco had already moved on to dedicate more time to Instapaper. Tumblr changed hands again, to Verizon, as Yahoo! sold off many of its properties. Tumblr seemed derailed as other social networks gained momentum.

When App.net's crowdfunding was successful, I blogged about loving the transparency of the new platform, because co-founder Dalton Caldwell was blogging regularly:

Where we only hear from Twitter’s CEO, Dick Costolo, through big news publications or at conference keynotes, for Dalton we hear it directly from his own blog posts, the way a small company should communicate. Being on the ground in posts and tweets is a perfect complement to his goal of treating users and developers as real customers.

Almost exactly 7 years to the day after I wrote that, Automattic acquired Tumblr. There’s a kind of symbolism to that date coincidence. Tumblr is effectively being re-funded.

Like Micro.blog, Tumblr is about making blogging easier. Like Micro.blog, Tumblr allows custom domain names for your blog, something no other major social network allows. Unlike Micro.blog, however, Tumblr’s community is only Tumblr blogs, although earlier versions of Tumblr supported adding RSS feeds. Micro.blog’s community brings together not just Micro.blog-hosted blogs, but people using WordPress, Mastodon, or home-grown IndieWeb solutions.

Tumblr seems in the best hands at Automattic since Tumblr was that small platform envisioned by David Karp and Marco Arment. Matt Mullenweg and the Automattic team have a bunch of work ahead of them to integrate Tumblr into the WordPress ecosystem. I don’t know how that’s going to play out, but I know that preserving all the Tumblr blogs and giving them new life is good for the web.

Micro.blog and Automattic may be on parallel tracks. Two companies wildly different in size and scope, but we can all learn from platforms that have come and gone, finding our own path to a shared vision of the future that embraces content ownership, supports healthy communities, and deemphasizes massive social networks. I’m wishing the team at Automattic the best.

People were pulled away from blogging, drawn to social networks that were faster to post to and easier to interact with friends. It's our job to pull them back to blogs by bringing the best parts of old-school blogging and modern social networks together.

Interview with Leah Culver

The more I revisited the early platforms of 2005-2010, before Twitter and Facebook had completed their takeover of social media, the more I wanted to hear the perspective of the founders who were building other tools at the same time.

Leah Culver was the co-founder of Pownce along with Kevin Rose and Daniel Burka. She talked to me about those early days in an interview in late 2019, with the new perspective of everything that has happened to the web over a decade after releasing Pownce.

This is an edited version of the full interview. In the few years since this interview took place, Leah had sold her podcast company Breaker to Twitter and joined Twitter’s Spaces team, working on live audio conversations, before leaving the company during one of the Elon Musk-initiated layoffs.

Manton: I know it's been a while since Pownce. 2007? You kind of started the project on your own, or how did it get started and how did you bring other people in?

Leah: So actually, it was kind of a collaboration between myself and 2 co-founders, Kevin Rose and Daniel Burka. And I would say that the idea wasn't like one person. It was a mix of ideas. I know that Kevin was really interested in the file aspect of things, like being able to share things. It was early Dropbox-ish days, so there weren't really ways to share things. And what's crazy is thinking back on it now, it's not just files as in you think like boring documents. It was even photos were difficult to share with people. This is pre Twitter even displaying any photos. And so the idea was you could share photos with people, but you could also share snippets of audio or snippets of basically anything.

Leah: So he was very interested in the file aspect. I was really interested in the social aspect, like how do we keep in touch with people? And this was very early days of Facebook, pre-News Feed, I think, or early days of News Feed. Basically the idea of these quick — we take it for granted now that you can just check things like Instagram or Twitter or Facebook to see what people are doing in your life. But that was totally new at this time. It was still very early days of like, "Hey, I just want to know what my friends are doing." And I think that has become such a powerful mode of communication now. But back then it was really early and that's what I was interested in.

Leah: And then Daniel Burka did all of our design and he was really key in figuring out how this all works and looks. And some of his designs actually later made it into Facebook. So the idea of being able to share links and photos. That little picker at the top of Facebook was definitely Daniel's influence, though inspired by Tumblr as well. They had a similar sort of design.

Manton: Yeah, it did seem unique. The fact that you had "send a message" or "upload a file". Even events, which I thought was interesting.

Leah: We had events, which blows my mind because that feels so new in Facebook. Facebook in the past 2 years has really upped their events game, and Pownce was really strong on events way back then.

Manton: At the time, I know some people kind of thought of Pownce as like it's Twitter, but it's got all these extra features. Did it feel to you at the time that you were one-upping other social networks and other platforms, like you were adding more?

Leah: Well, Tumblr also existed at the time, which felt more like a blog. So we were trying to be somewhere in between Tumblr and Twitter. Twitter was just short messages limited to character counts and was really only text-based and no images, no whatever. And then we were trying to be somewhere in between. We wanted to be faster than blogging, like you could post things quickly. And we actually were really early mobile, too. So as soon as the iPhone launched, we had an iPhone app. As soon as they had apps, we had an app launched with the initial app launch. And so we were thinking about like, really, how can we send things the quickest way possible to friends? I think our tagline was something like "send stuff to friends".

Manton: And a part of that was also, do you want to share with everybody? Like the public?

Leah: So you could totally share publicly but you also could do like friends-only stuff, which now we're seeing with Instagram has a close friends only. Facebook has always sort of had those sort of privacy controls, but Pownce really was pioneering in that aspect, the share only with friends. And later, we saw companies like Path do a very similar route to that. I loved Path for sort of like the private sharing aspect. Or Snapchat even doing more private one-on-one sharing.

Manton: Yeah. I know you had a mobile app and then the timing was kind of interesting to me because the iPhone was out, but there wasn't an SDK until a year later. And so I feel like, you know, Pownce was right there. Right before the SDK, but also it didn't really last, multiple years later, where everybody had iPhone apps. Did it feel like you weren't sure... I guess some people kind of "missed" mobile, but you were there just at the right time.

Leah: I don't feel like we missed mobile, but it was very early. So I don't think people were really using mobile apps the way that we do now. What was really fun is like we got to pioneer some mobile things. So I got a chance to work on OAuth and oEmbed, two specifications — it's still around, or at least their influence is still quite heavy. One of the really fun things was Mike Malone, who was our iOS engineer who built most of our iOS app, worked on the system to app-switch to log in. So every time an app is like "log in with Facebook or Twitter" and you switch over to the Facebook app and back and he sort of pioneered — that was like his innovation using sort of the protocols, so registering the protocol to do that callback, which was really cool. So there's still stuff today that I'm like, "Oh, yeah, we invented that." Which is really cool.

Manton: Yeah, and so you were involved in OAuth, the spec coming basically right around the same time I guess. It must have been an early — because I think 1.0 was even a little bit after.

Leah: No, it was around the same time. So OAuth 1.0 was actually earlier than iPhone apps. So I think that was probably 2007, and it was a collaboration between myself and a bunch of other authors, but most notably folks from Twitter and...

Manton: Blain Cooke was on it...

Leah: Yeah, Blaine Cook was on it. Chris Messina was on it. EHL was on it. And then a bunch of people from Google and things got involved later. And then we had the fun of Facebook rewriting it a couple of years later to only use SSL. And it was like, "Okay, thanks Facebook. Great." So now, I'm a big fan of OAuth 2, but it has some assumptions baked in that we didn't have with OAuth 1, which mainly is that SSL at the time was really expensive to do. And now it's just industry standard and it's very cheap. So that was a good innovation.

Manton: So you rolled out the API and OAuth was part of that. I want to say that was kind of in the middle. It was after the launch, right, that you started getting developers?

Leah: Yes, it was almost a year after launch and it was hugely in demand. At the time, the idea of having an open API was just really exciting for developers in a way that we don't really see even today, which is unfortunate. Breaker doesn't have a public API and we don't really have people asking for it. I think that back then we had whole companies just working on APIs, right? We had Mashery. This was the start of Twilio and other companies — Urban Airship or things like that — where their whole business was an API. It's actually the start of Stripe as well.

Leah: So around this time APIs were super hot and developers loved to create projects on top of APIs, and I think we've seen a lot less of that lately. I think it's in some ways an effect of the maturation of the software industry, for better or worse. I actually think it's gotten worse, that things went that way.

Manton: I know there was a Google Group for API discussion, which I think maybe has been lost to time. But working with developers and iterating on the API, what did that feel like at the time?

Leah: Oh, it was super fun. I would say I'm a developer's developer. I love working on projects that other people can hack on and seeing what they're doing. And so it was a lot of fun.

Manton: And I know you launched with an Adobe Air native app.

Leah: That's so fun because I was talking about the iPhone app, and we made a desktop app in Adobe Air. One of the reasons we chose to do it was Adobe was pushing it pretty hard. It was cross platform and it was really cool. A fun project to work on.

Manton: Did that use the API before the API was public, or did that use something else?

Leah: That's a good question. It's the same API. We only had one API. I just don't remember when it went public versus when we used it internally. It probably had coincided with adding auth through OAuth. So as soon as we had OAuth in place, we launched publicly. To be honest, I think we might have launched also with HTTP Basic Auth, which nowadays over SSL is probably almost okay, but then wasn't as great.

Manton: Just sending passwords in the clear. 🙂

Leah: Yeah, which now wouldn't be so great. But now with SSL, it's almost like... I mean, everybody does OAuth, because it's easy. It's easy for users.

Manton: I want to get back to... You were talking about trying to — kind of like blogging, but way easier, and also the messaging and the other features. Was there actually a character limit?

Leah: There was, in some sense, but nothing like Twitter. We didn't have the restrictions of SMS. Because they were based on SMS, and we didn't... It was really the post-SMS world. We had the iPhone app come out. We were very focused on just being desktop and mobile only. And not so SMS-based, I guess.

Leah: What's crazy is if you remember at the time, like Venmo was SMS-based, which blows my mind to think back, that Venmo is as old as Pownce was, but nobody used it then. SMS was not the future of communication. 🙂

Manton: Now we accept that Twitter is huge and Facebook is huge. We have these massive platforms. The scale is hard to kind of deal with. But back then, it feels like there was a lot of competition, and there were people trying different things. Did you get a sense back then that Twitter was going to "win", and be as popular as it's gotten? Or did you get a sense that, "No, we can make a run for this? We can go head to head."

Leah: Yeah. I definitely thought there was a lot of players in the game. There were a lot of different apps. And then we get people being like, "Oh, I can't use another social app. I'm just so tired. I just want to use one." So we don't think of that now because I feel like it's almost the opposite. We're so sick of only having one platform, like, "Oh, everything is Facebook." Instagram is Facebook. Facebook is Facebook. It's annoying that I log in to Facebook and it's like, "Hey, you made a friend on Instagram. Don't you want to make a friend with them here?" It's like, "No Facebook, I don't." Nowadays I think there's this hunger. People get on TikTok and they're like, "Yes, finally, a new social network." But it was the opposite then. It was like we had social network fatigue. It's like, "Oh, I don't want to log into another service." Okay, make up your mind.

Manton: It's interesting because people didn't want to keep going to the next thing and moving their friends over. But at the same time, like you said, most of these services had APIs and they tried to be open and now we have these huge platforms which are closing their APIs off, and being less open, especially Facebook. And I wonder how that affects people's ability to jump between platforms or feel trapped.

Leah: Yeah, I feel just attitudes have shifted so much in the past 10 years. When we started, everyone was building social apps. It was really fun. There was a lot of choice. And then users were saying, "Oh, I'm fatigued. I don't want to move around."

Leah: And then we got the monoliths: the Twitter, the Facebook. And then people were like, "Oh, no, what have we done?" We have these small group of companies who have all of our data and they're run by white men. Like we didn't choose the right choices here. We decided to put all our faith into these big VC-backed companies. And who did the VCs pick? They pick people of a singular background who have a very narrow point of view of the world. And so even though the platforms are full of people with diverse backgrounds using the platforms, the people at the top and the leadership and the content moderation and all of these things is influenced by a very small group of people who are very homogenous.

Leah: And I think that's a problem. One of the things I'm most sad about was, you know, I was young and Pownce was acquired pretty early. And I don't know how much control I had over it. I was pretty young and probably the least influential person on the founding team. And so I don't feel like I had a lot of control over the fact that we were acquired and shut down. But at the same time, I wish I would've fought a little bit harder, just so that we could have at least some other kind of viewpoint in our big social networks. 🙂

Leah: And I noticed in your book... you know, "what is the future?" I do think there might need to be some pushback against the same type of social networks being completely in control. And whether that's users owning more of their data. I don't know if that's even possible because, like I said, there is this fatigue of moving my friends over. I just think we want more variety in the people that have power in the tech industry. So it's like how do we enable that? Is that through legislation? Is that through changing how our VC system works and how companies are backed? I don't know. I'm hoping there'll be more change.

Manton: Me too.

Leah: It doesn't look so promising at the moment. 🙂 Poor Snapchat is getting kicked around by Facebook. Not that Snapchat doesn't have the same type of homogenous leadership that Facebook has, but it would be nice to see them at least have a chance.

Manton: You talked about the diversity, and also you mentioned moderation and trying to stay on top of community issues. That's something I'm really interested in. I know back in the old days, most of us didn't really think about that because we're building stuff and we're not really thinking 5 years, 10 years down, what happens if our platform gets big? Pownce had a public feed and you had a lot of places that problems could happen. But I'm wondering if they ever did happen.

Leah: Oh, yeah. I want to say, this was not like people weren't thinking about it. In fact, we had our community manager, Ariel Waldman, who blogged about it back in 2007 — the treatment of community. She actually fought back against sort of Ev Williams at Twitter and some of the things that they were doing — the lack of moderation and respect for the community. It's an interesting read now. Looking at things through a different lens, many years later, you're like, oh, wow, this is really early talk about community and moderation.

Leah: But it wasn't that people weren't thinking about those issues. It was that it was a lower priority than scaling and growth and keeping the sites running. Twitter had a lot of scaling problems. So all of these things were more top of mind than community. And nowadays we can sit back and we can say, "Okay, things are running." Facebook and Twitter run. They're not falling over every day. And now we have the opportunity to think more about moderation and content.

Leah: And to be honest, back then I think everyone thought like, "Oh, freedom of speech, blah, blah, blah." But we don't realize a company is not the US government. We don't have the obligation to ensure — like we don't have the same constitution that the United States has. Private businesses are allowed to sort of set their own rules and guidelines. And I wish that more founders and leaders of companies really thought about that. What do you want your community to be like? What do you want your company to be like? I think there are more thoughtful and less thoughtful companies when it comes to sort of these things. So I don't want to say all of them don't think about it, but I think the whole community could benefit from having people thinking about these things more.

Manton: How big was the team when in the middle there, when you sold or before? Because you mentioned having a community manager early on...

Leah: Oh, tiny, tiny. Three founders, support person, back-end engineer, and an engineer. Six people, seven? Something around there. So Pownce never got very big in terms of employees. We were in the process of hiring another person when we were acquired, so we were still tiny.

Manton: Six Apart acquired and you went to work there. They had TypePad already. They had Vox. What were your expectations of combining Pownce with the blogging platforms that Six Apart had?

Leah: So this is a tough question to answer because there's like what I know now versus what I knew then. So at the time they had TypePad, Vox, and LiveJournal. And what we were really encouraged by was the fact that Vox and LiveJournal were like these thriving communities.

Leah: I guess I should back up and say why we were acquired, which was that 2008 happened. And Ron Conway was probably our main investor. I think he was the biggest investor in Pownce. And he had this whole like "good times are over" thing. RIP, good times. And he was like, "Oh, I'm going to sell off all of these small investments I made." And then there was pressure from Digg... Kevin and Daniel were both employed by Digg full time. And there was this pressure to get them back working on Digg more and stop paying attention to Pownce. So there were these couple of different forces in play and we needed to raise more money in order to sustain the site. So instead, we were like yeah, let's explore acquisitions. Six Apart wasn't the only company we talked to you, but they were the one that we thought would be the nicest landing for Pownce.

Toward decentralization

“Nature uses only the longest threads to weave her patterns, so each small piece of her fabric reveals the organization of the entire tapestry.” — Richard P. Feynman

Social networks that chased scale often stumbled under their own weight, artificially held up through funding that wouldn’t last. The web is at its best when decentralized, with many smaller platforms and communities.

Small companies can provide personalized support because they know their customers. Small companies can manually curate the discovery experience because their content base is not overwhelming.

Scale is inherently at odds with decentralization. Our takeaway from past social networks should be to learn from the individual features they might have gotten right even within the larger failures.

As New York City was realizing what they had lost with Penn Station, there was a push to preserve similar historic buildings, iconic structures like Grand Central Station and the James A. Farley Building, which finished construction in 1914. People learned the lesson of letting Penn Station go. They did not want a repeat of watching majestic, once-in-a-lifetime architecture torn down.

The Farley building, across the street from Penn Station, later became a post office. And in what must be an ironic metaphor for Facebook taking up more and more attention on the web, in 2020 during the COVID pandemic the Farley building was leased as office space for Facebook.

Nothing stands still forever, unchanged. But technology can evolve without tearing everything down, instead preserving the good ideas that came before — ideas such as a more distributed, open web — just as these old buildings can be preserved even as they are reinvented with new shops or offices.

Early platforms like Pownce, Tumblr, Flickr, Google Reader, and App.net each contributed their own innovation, emphasizing different features that would later influence social networks, blogging, and the formalized post types in the IndieWeb community that we’ll cover in Part 3. We can learn from those past experiments as we build modern tools.

There was a little something in each early platform that was right. Pownce and Tumblr had subdomains for users — username.tumblr.com instead of tumblr.com/username, leaning more on DNS for identity than Twitter and Facebook do. LiveJournal and MySpace had more personalization, even HTML tinkering.

MySpace allowed CSS in profile pages, letting users do almost anything with customizations like background colors, fonts, and new images. This potential for uniqueness became an important part of MySpace users expressing themselves.

Personalization and independence go hand in hand, whether it’s customizing a blog design or controlling your own domain name. It’s a theme that runs through the W3C’s Ethical Web Principles.

The principles are the work of the W3C Technical Architecture Group, formed to build high-level consensus around principles of the web. The ethics document is about giving individuals more control — that small developers should be able to build tools outside of large companies, and that small platforms are an important part of maintaining that balance of power.

We recognize that web technologies can be used by developers to manipulate people, complicate isolation and encourage addictive behaviors. We recognize these risks and seek to mitigate against them when creating these technologies and platforms. We will therefore favor a decentralized web architecture that minimizes single points of failure and single points of control. We will also build Web technologies for individual developers as well for developers at large companies and organizations.

By the time the W3C published this in 2021, it felt like a formalization of principles that many developers were already following. It put into words something we already want and are working toward.

We want smaller platforms again as was common in the height of Web 2.0. Back then it was more like a fabric of web tools, where one app might build on Flickr’s API, or another app might plug in missing features in early versions of Twitter like search or photo hosting. But with indie microblogging we want to go further, even more decentralized, where platforms fade away and all we have are our own blogs, woven together as a new foundation for the social web.

	

	
	Part 2: Foundation

“I am very aware that the original concept must do something worthwhile creatively or all the hard work to follow will be wasted.” — Mary Blair

It was 2002 at the SXSW Interactive festival in Austin. I had registered my domain name manton.org a few years earlier, and used it for some project pages and even a niche link blog on animation as early as 1999, but I had never dedicated the whole site to a personal blog. What I saw at SXSW was the inspiration I needed to start blogging.

My first post, in its entirety:

SXSW Interactive started today. Seems an appropriate time to start a weblog, as if there weren’t enough in the world already. Welcome, and enjoy.

In hindsight, this first post illustrated two things: first, it was actually a microblog post, at only 145 characters and no title; and second, I thought I was late to blogging. I thought there might already be too many blogs. Now, 20 years later, my blog is older than all but a handful of the hundreds that I read regularly.

There weren't enough blogs back in 2002, and there aren't enough now. I have no doubt that some of the blogs created today will be important in the years ahead, maybe contributing to a debate on politics, or showcasing new writing or art, or serving as an archive that reflects today's culture.

Personal blogs are independent by default. They are separate from any one platform. In 2002 if I had instead chosen to put all my writing into early social networks like Friendster or MySpace, which launched a year later in 2003, I wouldn't have much to show for it now.

My blog is one of the most important things I do. It's not my full-time job. It doesn't make any money directly. But consistently writing, collecting a memory of those everyday events, adding my own commentary on technology, or chronicling the projects I work on — it becomes a substantial archive over time.

Domain names

“Postel walked in because he had a job for Mockapetris. He wanted him to find a compromise between five different proposals for improving the way the APRAnet dealt with names and addresses. Mockapetris took the job, but he pretty much ignored the five proposals and built his own system.” — Cade Metz writing about how Paul Mockapetris created DNS

For me and for most blogs, it all started with a domain name. Dan Gilmore wrote for the Guardian in 2013 about encouraging his students to register a domain name to control their content, because a domain name is your identity, the one thing that doesn't change as social networks come and go:

To the extent that they live public lives in any way – and like it or not, it's getting harder not to be public in some way – tomorrow's adults will need an online home that they control. They need an online home, a place where they tell the world who they are and what they've done, where they post their own work, or at least some of it.

A personal domain name is the most fundamental requirement of indie microblogging. You can start with username.wordpress.com or username.micro.blog, but at some point to be truly independent, a personal domain name must be mapped to your web site.

Consider street addresses. Addresses on the web (URLs) are just like street addresses, right? You enter a web address in your browser to visit someone's web site, just as you would look up a street address to map directions to a physical location.

If you ever need to move to a new neighborhood, you can forward mail to another street address. This is a feature the postal service provides. But if your content is on someone else's web site — on someone else's domain name, whether that's medium.com or a new social network — then there is no mechanism on the internet to forward readers to a new site. Here the analogy to street addresses starts to fall apart, but we already have a layer of the internet that is responsible for fixing this even better than your local post office: DNS.

By using custom domain names as your web address — yourname.com instead of medium.com/yourname — you don't need to point your readers to a new location and have them resubscribe manually. The "forwarding" is a feature of how domain names work. When your identity on the web is a domain name, you have the flexibility to move content between web hosts and platforms without breaking links to old posts.

Your domain name contains multiple DNS records, each of which maps a hostname like www.yourname.com to a server that can serve your posts to your readers. There are generally just 2 records you need to be aware of:

		A: short for "address", this is used to map your root domain (yourname.com without the "www") to an IP address.

		CNAME: this is used to map a subdomain (www.yourname.com or microblog.yourname.com) to another "canonical" hostname, such as yourname.micro.blog.

A common set of DNS records to use Micro.blog servers for hosting would look like this:

	
		
				
				Type

			
				
				Hostname

			
				
				Value

			
		

	
	
		
				
				A

			
				
				
			
				
				104.200.22.214

			
		

		
				
				CNAME

			
				
				www

			
				
				username.micro.blog

			
		

	

Even one of the web’s newer social network platforms, Bluesky, has embraced domain names as usernames with the AT Protocol. By adding a DNS record or a special .well-known document at your domain name, you link your account with your domain name.

Domain names are so important because they exist at a layer above any web hosting platforms. If you're no longer happy with your web host, or they go out of business, it's your domain name that allows you to move to another web host without breaking URLs, so that readers can still find your content. This level of indirection makes your content portable, which makes it your own.

Syndication

“The magic of compatibility between products, that's a big part of what I do this for. All the great stuff is built around agreements between developers to let users move data between the products.” — Dave Winer

After a domain name, the most important glue that holds blogging together is the feed. The feed takes all the variety in web sites — custom designs, navigation, URL formats — and strips it away to the essentials: a list of posts and some simple structured data for each post.

Feeds are separate files that exist alongside a blog's home page. Feeds usually contain the same posts as the home page, but stored in XML or JSON format instead of HTML. This allows developers to more easily build apps that can display a list of posts without needing to extract the important fields from the layout of the site.

Feeds make the web more accessible. With the introduction of the first feed reader, it was possible to follow many more blogs. It was much more efficient than manually checking on your favorite sites, wondering if they had posted anything new.

In a post at the end of 1997, Dave Winer wrote about his first experiments that would lead to RSS feeds:

When I edit the page, it's an outline. I type in items, and render the page from the most recent seven outlines. The whole process is automatic, there's almost no hand-coding of HTML, and that's made it possible for me to create a new flow in a different format, XML.

Dave predicted a new generation of applications based on XML that would exist alongside the web browser. The key was better writing tools that would abstract away the details. XML for every blog post would never catch on if the author needed to manually create the files. It had to be as simple as publishing a new post and letting the blogging software handle the feeds.

Netscape was developing a portal called My.Netscape.com. It allowed you to configure your portal home page with a visual grid of boxes, each box pulling from a different data source like weather or news. By leveraging XML feeds, the portal became an aggregation platform that could be extended with a wide variety of data sources, even from blogs.

Dave Winer’s scriptingNews format was an inspiration for the work Netscape was doing, but Netscape’s early experiment creating RSS used RDF, the Resource Description Framework. The markup was different, and Dave and Netscape initially worked together on a common format.

Netscape's interest in RSS was short-lived. No one really had ownership of the format. It was in this vacuum that Dave Winer iterated on the format with versions 0.92, 0.93, and 0.94, even as a separate group would develop RSS 1.0, moving it back to its roots with RDF.

Dave Winer later came to question whether throwing away his scriptingNews format was the right decision. In a post in early 2020, Dave wrote:

I turned a corner in 2017 with my blog. I realized then, though I wouldn't have put it this way, the price I paid by merging formats with Netscape was too great. It forced blogging into the title-description-body model of journalism. But blog posts are more free-form, they don't all fit into that structure.

Back when Netscape was interested in RSS, it was a way to integrate content into a portal. Portals were the big thing in 1999. Social networks today are the new portals, but instead of looking at common formats to improve sharing data, each social network tends to create their own closed API.

One challenge that large platforms have when they have thousands of feeds to check is that polling takes time. They have to download each feed to see if there are any new posts, and many client apps don't refresh feeds very often. Part 5 covers how we can get real-time updates when a blog changes.

There’s a classic programmer joke, most widely known for the version with regular expressions:

Some people, when confronted with a problem, think “I know, I'll use regular expressions.” Now they have two problems.

We can relate to it and laugh because programmers are often inventing more work for themselves in an attempt to automate their way out of a problem. The shortcut ending up as the longest path has the ring of truth to it.

In the spirit of that joke is an XKCD comic that is often shared whenever someone creates a new file format or standard: “Now there are 15 competing standards.”

[image:]

It resonated because it captures something that’s almost always true when starting a new format: the attempt to solve problems in the status quo. We all want to fix limitations in the old format, and format wars can inevitably result.

For Dave Winer in 2003, RSS 2.0 was done. Apps could be built on it as-is, and if the format remained frozen then apps would be guaranteed compatible.

In an interview with CNET, Dave Winer talked about how he came to Harvard, where the RSS 2.0 specification was hosted. The school was interested in making it easier to share information between different parts of the school:

They had a conference late last year where they were trying to establish what was the digital identity of Harvard University, and the idea came out. It's a very big decentralized school with a small core and a whole lot of schools that are part of it--the business school, the school of government, library sciences--and in that way it's sort of like a company with divisions. How do you get those divisions to work with each other and share information so they don't duplicate efforts? […] The solution sounded very much like Web logs, so a bunch of people told Harvard, "You should talk to Dave."

Harvard had been founded over 300 years earlier. Their libraries held thousands of books and documents. With that kind of stability, Harvard was a natural place for the frozen RSS specification.

Dave Winer followed up about the split of RSS in a post in early 2019:

The two groups wanted to do very different things. Netscape, as far as I'm concerned, wanted to bootstrap syndication of web content, and that was validated by the enormous popularity of RSS for that application. They had a vision that was right. And yes, they did one day just disappear. I wanted to preserve the progress we had made and build on it. I loved the idea since feeds provided exactly the level playing field I wanted for bloggers and pros.

Sam Ruby had started a wiki to brainstorm an alternative to RSS, an effort that would lead to the Atom feed format. A key motivation was the frustration of not being able to update the RSS spec to clarify inconsistencies:

The problem is that Dave Winer has declared RSS 2.0 the last version of RSS. We could write guidelines and recommendations but we'd be always be hobbled by the fact that the actual spec is untouchable.

There was good and bad about freezing RSS. While the goal was to have a stable foundation for app developers, the reality is that we ended up with a much more muddled set of standards. Atom was clearly specified but a different format, forcing developers to choose between RSS or Atom, or use namespaces to mix elements from Atom into existing RSS feeds.

This mixing can be seen in the content:encoded element, which is often used to be explicit about using HTML in an RSS feed. It’s in widespread use from the RDF Site Summary module, but not technically part of RSS:

<rss version="2.0" xmlns:content="http://purl.org/rss/1.0/modules/content/">
...
<title>Testing</title>
<description><![CDATA[Hello world.]]></description>
<content:encoded><![CDATA[<p>Hello world.</p>]]></content:encoded>

Atom also came about at a time when most blog posts were using titles, so the Atom spec itself requires titles:

atom:feed elements MUST contain exactly one atom:title element

Not only is the title required, it also shouldn't be empty according to the Atom spec:

It is advisable that each atom:entry element contain a non-empty atom:title element, a non-empty atom:content element when that element is present, and a non-empty atom:summary element when the entry contains no atom:content element.

This is not a good fit for a microblog post, which has no title. Meanwhile, XML in general — which both RSS and Atom are based on — is falling out of favor with developers.

And at the same time, podcasting has grown into a huge industry. Almost all podcast feeds are RSS, not Atom. When people talk about the technology behind podcasting, they mention RSS, not Atom. Even though RSS was a frozen format, it had all the momentum.

RSS is not going anywhere. Even if we explore other formats for syndication, all blogs should have an RSS feed. RSS forms the foundation for subscribing to blogs and delivering podcasts. It’s huge and the open web is a much better place because RSS exists.

So we should do two things: support RSS in its simplest form, cutting out all the cruft, and also support JSON Feed to make it easier to build new apps.

RSS for microblogs

“A complex system that works is invariably found to have evolved from a simple system that works.” — John Gall

Even if RSS doesn’t need to change, some types of apps would be better off if we took a fresh look at the elements in an RSS feed. What is really needed, and when faced with multiple “correct” options, which should we choose? As more writers embrace microblogging, it’s an opportunity to simplify our feeds and tools.

There have been proposals for adding things to RSS to make it more suitable for microblogging and social networks. RSS 2.0 uses XML namespaces to add new types of data to a feed. Dave Winer in 2012 proposed his own microblog namespace with additions such as linking to the archive of someone's microblog posts. Dave blogged at the time:

It understands full links vs shortened links. It defines a calendar-structured archive, so you can store all your posts in RSS format. This has been a long-standing problem, and this solution really works.

None of these suggestions are strictly necessary for microblogging with RSS, though. Some features, such as referencing archived posts, can also be accomplished with RFC 5005, which documents how to support paginated RSS feeds to include many more posts than would normally be in a default feed.

Instead of adding things to RSS, we should be taking away — simplifying the required elements to make feeds more readable and consistent.

This chapter is my proposal for a bit of housekeeping around microblogging. It’s not a new format. It’s just a guide for producing the best RSS. I’ve divided this proposal into three sections below.

Minimum viable elements

Look at the average RSS feed and there’s a lot of junk in it that most RSS readers ignore. While there’s nothing wrong with including extra XML elements, we should strive for a feed that is simple enough to be easily read. The fewer redundant and unused elements, the more consistently that different RSS readers will interpret it.

Here’s an example of an RSS feed whittled down to its essential elements. Most feeds should look like this by default, and only add additional elements from the RSS spec or RSS extensions when it’s absolutely required (such as the enclosure element for podcasting).

<rss version="2.0">
 <channel>
 <title>Manton Reece</title>
 <description>Manton's weblog.</description>
 <link>http://www.manton.org/</link>
 <item>
 <title></title>
 <description><![CDATA[
 <p>Hello world.</p>
]]></description>
 <pubDate>Fri, 04 Sep 2015 15:32:32 +0000</pubDate>
 <guid isPermalink="true">http://www.manton.org/2015/09/3007.html</guid>
 <link>http://www.manton.org/2015/09/3007.html</link>
 <author>@manton</author>
 </item>
 <item>
 ...
 </item>
 </channel>
</rss>

Title is optional

The existing RSS spec says that title is optional. In fact, in the early days of blogging, tools such as Radio Userland and Blogger didn’t even have titles. We got away from that with the popularity of Movable Type and WordPress, even though some modern apps like Tumblr still look at a title as unnecessary for certain post types.

With microblogging, the title will frequently be empty or missing. Do tweets have titles? No, and neither should short microblog posts published through a traditional blog platform. Skipping the title removes some friction in the writing process, making it easier to write a quick post and send it out.

From the RSS spec:

All elements of an item are optional, however at least one of title or description must be present.

Dave Winer followed up on this issue in a blog post in 2022, encouraging feed authors and client developers to handle title-less items correctly. About some clients adding a “no title” disclaimer:

The first item has a [no title] message where a title would go. Why? Look at it from the human reader point of view. What information does that convey, above what the writer was saying, in bigger type and in bold. NO TITLE. I don't know about you but to me that looks like criticism, an error message, from the software to the person who wrote the post.

Leaving the title off or blank is not an error. Short, microblog posts do not have titles, and adding one would be wrong.

RSS readers must be prepared for a title-less RSS item. If you're building a feed reader, instead of inserting “Untitled” as the placeholder title, think about how your reading UI can accommodate microblog posts gracefully. Blank titles (where the title exists but is an empty string) are equivalent to a completely missing title element.

HTML post text

The description XML element in RSS wasn’t originally intended to support HTML. It was often a text summary or opening paragraph of an article, rather than the full text. With microblogging, you always want the full text inside the RSS feed, including any styled text or inline HTML links.

Some feeds will include the plain text version of a post in the description element, and the HTML version in a content:encoded element, as specified by this RSS namespace extension. This should be avoided in favor of a single description element with the full HTML, using CDATA syntax to avoid escaping characters:

<description><![CDATA[
 <p>Hello world.</p>
]]></description>

In modern apps, rendering simple HTML is common. Bold, italics, and inline links can be supported in a wide range of apps. In 2023, Dave Winer attempted to wrap up many of these basic microblogging principles under the term textcasting — using the same RSS-based format as podcasting, applied to text and social media. On styling, he wrote:

Simple styling, bold and italic. Don't overdo it, but sometimes you want to emphasize a word. It's part of how we speak, so it should be reflected in our writing.

Styling and links are a fundamental part of the web. If an RSS reader can’t show HTML, it should strip out the HTML tags itself. It’s not up to the feed to provide multiple versions. If both description and content:encoded are present in a feed while parsing, for compatibility it’s acceptable to prefer whichever includes HTML.

JSON Feed

“I gave it a specification and a little web site. All the rest happened by itself.”

— Douglas Crockford on documenting JSON

Twenty years after RSS was getting its start, Brent Simmons blogged about introducing a new format called JSON Feed. He started by pointing to Dave Winer's rules for new standards, that it's better to have fewer formats:

I agree completely — but I also believe that developers (particularly Mac and iOS developers, the group I know best) are so loath to work with XML that they won’t even consider building software that needs an XML parser. Which says to me that JSON Feed is needed for the survival of syndication.

We believed that a new format would help the open web get a kick, bootstrapping new work. RSS is pervasive, but there are little quirks that still trip up developers, and XML has fallen out of favor. New APIs are being written in JSON.

JSON Feed is an alternative to RSS. JSON Feed is easy to generate and was designed with microblogs in mind. The title in each post is optional:

Microblogs, which are often plain text and without titles. So much web writing today is Twitter-like, which is actually plain text.

Another advantage of JSON is that HTML can be used without the special escaping that is required in RSS. Because HTML tags and XML elements both use angle brackets, they must be escaped in RSS, often producing unreadable markup.

Here's an example JSON Feed with a single microblog post:

{
 "version": "https://jsonfeed.org/version/1",
 "home_page_url": "http://www.manton.org",
 "feed_url": "http://www.manton.org/feed/json",
 "title": "Manton Reece",
 "items": [
 {
 "id": "http://www.manton.org/2018/04/6721.html",
 "url": "http://www.manton.org/2018/04/6721.html",
 "content_html": "<p>No sweep. What a great game. Go Spurs.</p>",
 "date_published": "2018-04-22T21:56:28+00:00",
 "author": {
 "name": "manton"
 }
 }
]
}

This clarity led to quick adoption. Within weeks of releasing the specification, many popular apps had added support for JSON Feed.

JSON Feed also helped achieve the goal of having more feed readers update to support title-less items. Feeds readers like Feedbin and Inoreader both have excellent support for short microblog posts.

This is what my microblog looks like in Feedbin. Notice that the list has variable heights to accommodate the full text of a short post, including inline photos:

[image:]

Micro.blog extends JSON Feed with a few extra fields that are appropriate for a microblogging service, such as account username and whether a post has been favorited by the current user.

JSON Feed uses a special field naming convention to add custom objects to a feed. Fields that start with an underscore character are custom objects provided by a service like Micro.blog. Micro.blog uses the field name _microblog for its custom objects.

"author": {
 "name": "Jonathan LaCour",
 "url": "https://cleverdevil.io",
 "avatar": "https://micro.blog/cleverdevil/avatar.jpg",
 "_microblog": {
 "username": "cleverdevil"
 }
}

Adding these custom fields to JSON Feed allows Micro.blog to use JSON Feed for its API, rather than inventing a new JSON format. The JSON APIs for Twitter, Facebook, Medium, and other social networks are all very different and not compatible with any other apps without custom support. Because Micro.blog uses JSON Feed for any API endpoint that returns a list of posts, Micro.blog's API can often be used directly by other feed readers.

The following API endpoints all return JSON Feed:

		/posts/all

		/posts/mentions

		/posts/bookmarks

Further, the public sections of Micro.blog's API (such as the Discover feeds) also use JSON Feed. They do not need authentication so can be used in any feed reader that supports JSON Feed:

		/posts/discover

		/posts/photos

		/posts/discover/books

And finally, hosted blogs on Micro.blog also use JSON Feed for recent posts, posts, and the archive:

		yourdomain.com/feed.json

		yourdomain.com/photos/index.json

		yourdomain.com/archive/index.json

In some of the photo feeds, Micro.blog again extends JSON Feed to provide more information, such as a thumbnail version of photos. The photo is included in the HTML, so that all feed readers have everything they need to show the post, as well as a separate image field for clients that support it, and a thumbnail_url with a smaller version created by Micro.blog:

{
 "id": "https://www.manton.org/2020/04/20/wildflowers.html",
 "title": "",
 "content_html": "<p>Wildflowers.</p><p></p>",
 "date_published": "2020-04-20T15:55:39-05:00",
 "url": "https://www.manton.org/2020/04/20/wildflowers.html",
 "image": "https://www.manton.org/uploads/2020/f53a913d74.jpg",
 "_microblog": {
 "thumbnail_url": "https://micro.blog/photos/400/https://www.manton.org/uploads/2020/f53a913d74.jpg"
 }
}

Adopting JSON Feed everywhere in Micro.blog allows the platform to be compatible with many feed readers, and brings consistency across most of the API.

Introducing Micro.blog

“All we have to decide is what to do with the time that is given us.” — J. R. R. Tolkien

Micro.blog is built on this foundation of JSON and RSS feeds, the importance of content ownership through domain names, and a new UI inspired by social networks.

Because of the technical hurdles of self-hosting your own blog, if we want to encourage more people to blog, it has to be much easier. Centralized platforms allow for that ease of use — nothing to install or maintain, with all the right defaults that use open standards.

I’ve always thought of Micro.blog as glue. It’s a thin layer on top of blogs that provides a Twitter-like timeline experience, adding conversations and user discovery. It’s a social network from the idea that more people should be blogging and sites should talk to each other.

Early on in the development of Micro.blog, I realized that building a social network on top of RSS feeds wasn't enough. Micro.blog had to be both a social network and a blog hosting platform. I became committed to making Micro.blog the best place to write a blog.

Micro.blog publishing is based on Hugo under the hood. On top of that foundation, it adds posting from the web or from iOS, default themes, and other customizations for microblogging. Micro.blog is one of the easiest ways to get started with a blog.

[image:]

When you publish a new post, Micro.blog takes the following steps:

		The new post is saved to a database in Micro.blog for your account.

		Your posts are written to files that Hugo can process. Micro.blog first runs the latest posts through Hugo so that the new post shows up as quickly as possible, then processes the rest of your posts.

		Your site is published to either username.micro.blog or your own custom domain name. This includes updating the feeds.

		Micro.blog reads the feed and notices the new post, adding it to the Micro.blog timeline for anyone who follows you.

The goal is for this to feel like a single step, just as if you were posting a tweet, but in reality Micro.blog separates out the blog publishing from the work of building the timeline. It is essentially 2 systems, working together, which means external blogs can also be plugged in to the timeline.

[image:]

Because Micro.blog is a bridge between centralized services and more distributed platforms, it needed many parts of a traditional API. Micro.blog’s JSON API allows for signing in, retrieving posts in the timeline, replying to posts, bookmarking posts, and more.

The official Micro.blog apps and third-party apps use the Micro.blog JSON API. Most present a timeline interface, with separate sections for mentions, managing posts, and other features.

[image:][image:]

Some of the popular third-party apps written specifically for Micro.blog include Gluon and Icro. Those apps and more are covered in the blogging workflow chapter.

Alternatively, third-party apps can instead use IndieWeb APIs such as Micropub. This will make these apps compatible with Micro.blog, but also potentially compatible with other platforms.

When Micro.blog was first launched, the IndieWeb APIs could not yet handle everything that Micro.blog needed. Over the years, as APIs such as Micropub have expanded, more and more functionality can be built on those standards.

Eventually, all new apps should be built with IndieWeb standards and not use the original Micro.blog JSON API. For that reason, most proprietary parts of the Micro.blog API won’t be covered in detail in this book, although they are still documented on the Micro.blog help site. Micropub is covered in detail in part 3.

Micro.blog is not the only choice for microblogging. A core principle of Micro.blog is that you can bring an existing blog hosted somewhere else, such as using WordPress, and that the Micro.blog platform works nicely with the rest of the web.

External blogs with WordPress

“As the web becomes more and more of a part of our every day lives, it would be a horrible tragedy if it was locked up inside of companies and proprietary software.” — Matt Mullenweg

Micro.blog is essentially a sort of aggregator. It downloads feeds of posts hosted on Micro.blog or on external blogging platforms, then merges those posts into a timeline experience for following users and sending replies. Because it’s based on standards, you don’t have to use Micro.blog to host your blog.

WordPress is used by over a third of web sites on the internet. It's had a huge influence on blogging and it improves regularly. Because if its popularity, we'll use WordPress as an example for thinking about how Micro.blog connects with external blogs. This section will go through the basics of microblogging with WordPress, although many of the tips here are just as applicable to other blogging systems.

Short posts

Everything starts with short posts. Without short posts, there’s no “micro” in microblogging. While there’s no formal rule for how long a post should be, I’ve found that 280 characters is a good guideline. It’s short enough that it encourages quick posts, but long enough to fit a full thought with proper punctuation.

Of course, 280 was intentional. It's double the original 140-character limit from Twitter. Any limit is arbitrary, so I liked picking a number that is symbolic of the move beyond Twitter.

After Micro.blog launched, Twitter also increased their limit to 280 characters. And even later, Micro.blog standardized on 300 characters, a nicer “rounded up” number.

If you want to continue to post to Twitter, Mastodon, Bluesky, or Threads, it's useful to keep those limits in mind while writing. I keep most of my indie microblog posts within 280 characters so that they cleanly cross-post elsewhere. But when I feel constrained by the limit, I don't hesitate to go over. It's more important to me that I get a full thought posted than to stay within the limit.

No titles

In most modern blogging platforms, the first thing you see when starting a new post is the title field. If you know exactly what you're going to write about, maybe it's fine to start with the title. But for many people, just picking a title is a kind of burden. It's another opportunity for a choice, which means it's an opportunity to give up before finishing the post.

We see how titles can introduce friction in the writing process outside of blogging too. In 2009, Daring Fireball author John Gruber wrote an essay about friction in programming languages and why it’s common to type into a new untitled window that has never been saved:

Friction is resistance. Hence untitled document windows containing hours of unsaved work — there’s an idea in your head that you want to express or explore, and the path of least resistance is to hit Command-N and just start working.

That’s how blogging should be too. Just start writing.

Blogging tools didn't always have titles. One of the early blogging systems was Radio Userland, which had an almost Twitter-like simplicity for new posts. There was no title field.

[image:]

In the RSS 2.0 specification, the title of a post is optional:

An item may also be complete in itself, if so, the description contains the text (entity-encoded HTML is allowed; see examples), and the link and title may be omitted. All elements of an item are optional, however at least one of title or description must be present.

Part of indie microblogging is getting back to the simplicity of title-less posts. When you’re writing a microblog post in WordPress, just leave the title blank, and if necessary update the WordPress theme to not include the title in HTML or the RSS feed.

You may find that some feed readers don’t gracefully handle posts without titles, often inserting “Untitled” for the title because they expect something to be there. If you see this, the best solution is to email the developer and ask for them to address it. Working around the issue with fake titles — dates, numbers, or portions of the text — will only ensure that client developers never improve their apps to handle title-less posts.

For WordPress, there are also work-arounds to keep using clean feeds without titles while still showing titles on your web site or in WP Admin. Colin Walker wrote a WordPress script that shows the date/time in WP Admin, to make it easier to manage posts.

Adding your feed

WordPress includes an RSS feed at /feed/. Add this feed to your Micro.blog account by clicking Account → Edit Feeds & Cross-posting:

[image:]

Micro.blog uses the feeds on your account to build the timeline of posts that will be shown to your followers. When you post to your blog, the post is added is added to your feed, which Micro.blog then reads and adds to the timeline.

Post formats

Newer versions of WordPress have the concept of post formats. Normal blog posts have a “Standard” format, but there are also these types: Aside, Image, Link, Quote, Status, and others.

While not all themes support post formats, most of the default themes do. If you're using a common WordPress theme, chances are good that it has basic support for "Status" or "Aside" already.

[image:]

It might be tempting to embrace all the post formats — for example, using the "Image" format when posting a photo to your microblog — but that adds some complexity that won't be well-supported in most tools. To keep things simple, use "Standard" for longer posts with titles, and "Status" or "Aside" for all your microblog posts: short posts and photo posts. You can always introduce additional formats later when you're comfortable with the basics.

(Ready for more advanced post types? The IndieWeb-friendly Post Kinds plugin from David Shanske introduces even more post types such as photo, check-in, reply, and like.)

Categories are another good way to group post types. If you use the Status post format for all microblog posts, try using separate categories such as Photos, Snippets, or Microblog. You can use categories to filter posts on your site, or have separate feeds for certain post types by including the category in the feed URL.

RSS and JSON Feed

WordPress’s default RSS feed at /feed/ will include all your posts, both long-form and microblog posts.

If you’d like to have separate feeds for different types of posts, use the category to control which posts are included in the feed. You can find the category ID in WP Admin under Posts → Categories. (Look for the "tag_ID" parameter on each category link.)

For example, to only return posts with category ID "5":

/feed/?cat=5

To return all posts except that category, prefix the number with a minus sign:

/feed/?cat=-5

Micro.blog can work with RSS, Atom, or JSON Feeds. JSON Feed is a good default choice if you're just setting up your account.

To install the JSON Feed plugin, in your WP Admin dashboard go to Plugins → Add New and search for "JSON Feed". After you install and activate the plugin, you will now have a JSON feed at /feed/json with the same posts as your RSS feed.

Themes

The default WordPress themes are named as years, such as “Twenty Seventeen”, with a new theme each year. These themes have basic support for microblogging.

The most important thing to look for in a theme is how it handles blank titles and post formats. Create a short post without a title and use the "Live Preview" button when selecting a new theme to see how it will look on your blog.

The default WordPress themes have limited support for an older version of Microformats, a format we’ll cover more in Part 3. Microformats can be used to add data to posts in a way that will be useful as you integrate more features such as replies into your microblog. More IndieWeb-friendly themes with support for Microformats include Independent Publisher and SemPress.

Cross-posting

Now that you have a blog that contains all your microblog posts, you can wire it up to cross-post automatically to other services. You’re writing on your own site first, but the posts still go out to your followers on Mastodon or Bluesky.

There are general tools such as IFTTT and Zapier that can take some action based on an item in your RSS feed, but none of them natively understand microblogs. When building Micro.blog, I wanted to bake all the correct logic for cross-posting directly into the platform.

Some of the things Micro.blog handles: sending short text out as if it was a regular tweet, extracting the first link in a post and appending it to the tweet, truncating long posts with a link back to your site, and downloading photos to attach them directly when cross-posting.

Posting from iOS

You can post to WordPress directly from the iOS app for Micro.blog. Tap Settings inside the app and choose "WordPress or compatible weblog". Next time you start a new post, Micro.blog will prompt to enter your WordPress URL and credentials.

The Micro.blog apps have a formatting toolbar that uses Markdown. To support Markdown automatically in WordPress, install the Jetpack plugin.

Alternative platforms

“In principle, I don’t believe anyone should own or run Twitter. It wants to be a public good at a protocol level, not a company.” — Jack Dorsey

When you disentangle your content from a centralized service like Twitter, using your domain name as the identifier instead of the silo’s domain name, you have many more choices for where to host your data. In addition to WordPress and Micro.blog itself, here are some other options for microblog hosting.

Tumblr

Tumblr and Micro.blog share many principles. Everyone gets a hostname, which can be upgraded with your own custom domain name, and there are many built-in designs for your blog.

Tumble RSS feeds include a post title even for post formats such as Quote or Photo that don’t actually have a title. Instead of leaving the title blank, Tumblr uses the first words of the blog post as the title in the RSS feed, truncated and then followed with an ellipsis. Micro.blog has special support for recognizing these synthetic titles and ignoring them.

To participate in the Micro.blog community, Tumblr users can create an account and add their Tumblr RSS feed to Micro.blog under Account → Edit Feeds & Cross-posting. Tumblr RSS feeds have the form:

yourusername.tumblr.com/rss

But Micro.blog users can also follow Tumblr blogs directly, even if the Tumblr users haven't yet registered on Micro.blog, by searching for their Tumblr hostname. Tumblr photo blogs look great in the Micro.blog timeline:

[image:]

Ghost

Like WordPress, Ghost is an open source project that you can either self-host yourself or pay Ghost.org to host for you. By default Ghost uses the placeholder text "(untitled)" for blank title fields, so it's not well-suited for microblogging. You can add custom CSS to hide these titles in your blog's design.

Mike Haynes has documented some additional work-arounds to Ghost’s default “(untitled)” behavior:

Using the custom RSS routing was tough for me to wrap my head around but I finally cracked it and, if you've struggled with the same, I want to share how I split out the post types into their own feeds and got them to display correctly

Unfortunately Ghost chose to build a custom API instead of adopting a standard blog posting API. You can post to Ghost from some native apps such as Ulysses, but not from Micro.blog.

Blot

Blot is a service that takes text files on Dropbox and converts them into a web site. It's a convenient way to create photo albums and other sites that you might want to manage from files you have on your computer. Blot creates an RSS feed that works in Micro.blog.

Mastodon

Mastodon is a federated social network that we cover in much greater depth in Part 5. You can add the RSS feed for your Mastodon account to Micro.blog for those posts to show up in the timeline. You can also follow Mastodon users directly in Micro.blog.

Write.as

Write.as shares many of the same principles as Micro.blog. It has a clean, clutter-free writing UI. You can use your own domain name and the marketing highlights this:

Build a home from your writing, away from walled gardens and locked-down platforms.

The pricing of Write.as is comparable to Micro.blog and the focus is around writing. There are plans for teams, but it’s about personal blogs first. It also supports ActivityPub and the fediverse.

Jekyll

Jekyll is a static-site generator that is well supported by GitHub. You write new blog posts as text files with Markdown. After checking the text files into a repository for your blog, GitHub Pages automatically generates the HTML and serves your blog for free. It also includes support for custom domain names.

If you want to get started with a blank single-page web site, the IndieWeb also has the blank-gh-site repository that you can clone.

The challenge with static sites

Before WordPress took off, Movable Type was one of the most popular blogging platforms. It provided a web interface for managing posts but then generated static HTML pages that were served directly, without needing a server-side scripting language. Serving static HTML pages is fast and portable to many different platforms with few dependencies.

Today's static-site generators take out the web interface and focus purely on building a series of HTML pages based on source files, usually written in Markdown. They have the performance advantages of being served directly by Apache or Nginx, but require running a script on your own computer instead of posting with other apps via an API. This makes posting from multiple computers or mobile devices more difficult.

Micropub is an IndieWeb posting API that we cover in Part 3. There are open source projects that attempt to work around the limitation of static-site generators by providing a Micropub API proxy. This makes API endpoints available for apps such as Micro.blog to call, and then turns those requests into files that are checked in to GitHub for your static site.

Static sites are by their definition not dynamic, and so not well-suited to get started with integrating APIs that need to process incoming web requests such as posting or comments. Micro.blog is powered by the static-site generator Hugo under the hood, but Micro.blog provides a layer on top that takes care of everything you need. If you’re rolling your own web site instead of using Micro.blog or WordPress, be prepared to jump through some hoops to get everything working.

Micro.blog and feeds

“As software developers and designers, we have a responsibility to the world to think these things through carefully and design software that makes the world better, or, at least, no worse than it started out.” — Joel Spolsky

No matter which blogging platform you use, the posts flow into Micro.blog from RSS and JSON feeds. Even microblogs hosted by Micro.blog itself generate their own feeds — just like WordPress or any blogging platform — which Micro.blog then reads from. Abstracting the connection with feeds makes for a consistent experience across a variety of blogs.

The central user interface in Micro.blog is the timeline. The timeline shows posts from your friends' microblogs.

[image:]

When someone you're following publishes a new post, Micro.blog displays it in the timeline. Micro.blog does some minor processing on the post HTML, striping out HTML tags or JavaScript that aren't appropriate for the timeline. Photos are displayed inline for short posts, and longer posts with titles are linked back to the author's web site.

How feeds work

A single account on Micro.blog can have one or more feeds. Unlike a traditional RSS reader where adding feeds controls which blogs you're reading, adding feeds to your account on Micro.blog controls where your own posts come from. (There's a separate interface for following other blogs.)

When a new post appears in these feeds, the post is added to the timeline. Usually there is just one feed: the user’s microblog. If the user writes longer posts at a different blog, or they want to connect bookmarks or other extra posts into the timeline, they can add those feeds to their account too.

The following screenshot shows the Edit Feeds screen. When your blog is hosted on Micro.blog, the feed for your blog is added to this screen automatically:

[image:]

This screen also controls which feeds cross-post to other platforms like Twitter or Mastodon. When Micro.blog sees a new post in your feed, it adds it to the Micro.blog timeline and also cross-posts it those platforms that are enabled.

Inside the feed are your recent posts in JSON or XML. Here's an example of what the latest post might look like in JSON:

{
 "id": "http://manton.micro.blog/2020/01/11/starting-to-get.html",
 "content_html": "<p>Starting to get excited for IndieWebCamp Austin next month! If you’re interested in an open alternative to the big silos, I hope you’ll join us. You can register for $10.</p>\n",
 "date_published": "2020-01-11T13:56:56-06:00",
 "url": "https://www.manton.org/2020/01/11/starting-to-get.html"
}

Micro.blog checks your feed for new posts as soon as the post is published, or every few minutes for blogs hosted outside of Micro.blog. (Part 5 covers how we can speed up downloading new posts.) When Micro.blog finds the new post, it adds it to the timeline so everyone following you can see it:

[image:]

Timeline display rules

Micro.blog follows a few rules when processing your RSS or JSON Feed into microblog posts to show in the timeline:

		If the post has no title and is 300 characters or less, the text is shown directly in the Micro.blog timeline.

		If the post has no title and is over 300 characters, the text is truncated with a link back to the full post on your site.

		If the post includes a block quote, the limit is raised to 600 characters.

		If there's a title and it looks like a date or number, Micro.blog ignores it, as if there were no title. It then tries to show the text in the timeline.

		If there's a title but the entire post text is actually just a photo, it uses the title but also shows the photo inline.

		If there is a title, text, and photo, only the title is shown and linked back to your site.

For any other kind of post with a title, the title is shown in the timeline with a link back to the full post on your web site. Micro.blog displays your domain name when it needs to append a link to your post.

Micro.blog counts characters for the text version of your post, excluding the extra characters used in any HTML tags.

Sometimes we hear the feedback that Micro.blog shouldn't be so picky about how it treats short microblog posts compared to longer posts with a title. Why not just show as much as possible in the timeline, and truncate as necessary? Why not allow a summary of a post to be used instead of the full post?

But the reason is that Micro.blog is optimized for microblog posts. One of the things that makes it different than a traditional RSS reader is that Micro.blog is designed to encourage short posts. It's designed to provide the best, Twitter-like experience for short posts so that more people embrace indie microblogging.

By having some rules about what a microblog post is, and making it easy to follow those rules in a Micro.blog-hosted blog, it will slowly start to change how people approach microblogging on their own site. If we didn't do anything special for microblog posts, nothing on the web would change, and microblogging would remain a feature of closed platforms only.

Part 4 includes more details about why indie microblogs use HTML for posts. Support for HTML tags is an important part of making Micro.blog feel like an extension of the open web instead of a replacement for it.

Part of the web

“Micro.blog is not an alternative silo: instead, it’s what you build when you believe that the web itself is the great social network.” — Brent Simmons

I often look back at this quote from Brent to help guide me as I evaluate the direction of Micro.blog. It takes the message from the Indie Microblogging Kickstarter video and distills into something concise and memorable. And it's a reminder that we must think beyond a single, silo-like platform.

If Micro.blog only included posts from user accounts registered on Micro.blog — requiring every user to set up a feed for their blog — it would be useful but limited by how many people will ever sign up on Micro.blog. It would fall short of the goal of connecting more of the web in an open way.

To expand beyond registered accounts, Micro.blog also lets users follow blogs and Mastodon accounts, even if the author of those posts is not on Micro.blog. In this way, Micro.blog acts more like a traditional RSS reader, where you can add a blog feed to follow posts from the author of that blog.

But the UI for Micro.blog is inspired by Twitter, not traditional feed readers. Instead of adding feed URLs to follow, Micro.blog is designed around adding "usernames" to follow.

Usernames on Micro.blog

Micro.blog has 3 distinct styles of usernames to make the platform more compatible with other services:

		Micro.blog usernames, e.g. @you. These are simple usernames for @-mentioning someone else in the Micro.blog community.

		Mastodon usernames, e.g. @you@yourdomain.com. When you search Micro.blog for these usernames, Micro.blog will look for the user in another federated Mastodon instance so that you can follow them.

		IndieWeb-friendly domain names, e.g. @yourdomain.com. This is where I always thought we'd go for more distributed "the web is the social network" interactions. Replying to one of these usernames will send a Webmention to that user's external web site.

I'm @manton on Micro.blog, my blog is manton.org, and because Micro.blog-hosted blogs support the ActivityPub API that Mastodon uses, you can follow me from Mastodon by using @manton@manton.org.

Following domain names

These special domain name usernames is where I think we can bring more social network-like interactions to the full web.

Here's an example. In a post on Micro.blog, you can @-mention someone's blog by including @domain.com in the post, using their domain name. If that blogger's site supports Webmention, Micro.blog will send your mention to their blog, where it could be included as a comment.

You can also follow blogs in the Micro.blog timeline, even if the blogger hasn't yet registered on Micro.blog. On the web, click Discover, then click the search icon, and enter their domain name. Micro.blog will auto-discover their JSON or RSS feed, letting you follow their blog just as you would follow any Micro.blog user.

[image:]

This feature is designed for blogs with a custom domain name. It assumes one blog, one user, one domain name, so it doesn't work to follow specific feed URLs yet. You'll still want a traditional RSS reader for sites that have multiple feeds.

It's particularly well-suited to platforms like Tumblr where everyone gets a hostname in the format username.tumblr.com by default. You can follow any Tumblr user on Micro.blog by entering their username.tumblr.com hostname in Micro.blog's search field. Micro.blog finds their RSS feed and includes their posts, including photos, directly in the timeline. The same works for Bluesky usernames in the format username.bsky.social.

Migration

“The magician takes the ordinary something and makes it into something extraordinary. But you wouldn’t clap yet, because making something disappear isn’t enough. You have to bring it back.” — The Prestige

The more we can use open standards, the more we can avoid being locked in to any specific platform. Blogging tools will always have some support for importing and exporting posts.

Micro.blog can import from WordPress, Medium, Tumblr, Ghost, Substack, Write.as, Twitter, and Markdown files. To upload a file from one of those platforms, go to Micro.blog on the web and click Posts → “…” → Import.

When importing, Micro.blog will create new blog posts from the posts in the import file. If there are any img references in the HTML for those posts, Micro.blog will also attempt to download those images and store them on Micro.blog. It will then update the HTML to use the new URL for the image on Micro.blog.

If the URLs for your previous blog posts are different than the URLs on Micro.blog, Micro.blog will keep a record of the old URLs and automatically set up redirects for them, so that no links will break. These redirects will become active once you've moved your domain name to point to Micro.blog.

If you're moving from a blog system not supported by Micro.blog, you may be able to automate moving the posts over. Kahlil Lechelt has created a script that will work with static-site generators such as Jekyll or Hugo by importing from a folder of Markdown files.

Mirroring back to WordPress

Some people prefer to use Micro.blog because it's easier to post to, but still want those microblog posts to go back to their main WordPress blog. The Feed Importer plugin for WordPress by Michael Lichwa will load your microblog's RSS feed, looking for new posts and copying them over to your WordPress blog.

RSS feeds on Micro.blog contain the most recent posts, not all posts. Feed Importer is best suited for ongoing mirroring of posts to WordPress rather than importing all previous posts.

If you are starting a new microblog hosted on Micro.blog in addition to maintaining a full blog outside of Micro.blog, you may want to integrate the microblog posts into your main blog.

You can include your Micro.blog-hosted microblog posts in the sidebar of your main web site with our JavaScript include called Sidebar.js. In your main site's HTML template, add this JavaScript wherever you want to include the microblog posts:

<script type="text/javascript" src="https://micro.blog/sidebar.js?username=your_username"></script>

Sidebar.js will take your recent microblog posts and insert them directly into your blog, wherever the <script> tag is placed. It doesn’t copy the posts — they are still stored on Micro.blog — but to your blog visitors it integrates the posts so they look more like part of the same site.

If you use WordPress, add this JavaScript in a "Text" widget available from the WordPress admin dashboard. Remember to replace your_username with your Micro.blog username.

The HTML for your microblog posts can be styled with CSS. The CSS class names include: microblog_timeline (for wrapping all the posts), microblog_post (around a single post), microblog_text (for the post HTML), and microblog_time (for when the post was created).

Sidebar.js defaults to including the most recent 10 posts. To show more, you can add &count=25 at the end of the URL.

Micro.blog has very little lock-in by design. Basing everything on blogs makes it easy to move away if you need to. It also means you can effectively ignore most of Micro.blog and still get value out of blogging regularly and participating in the larger IndieWeb community of connected blogs with cross-site replies.

You can export your posts from Micro.blog in WordPress format or Blog Archive Format, which is covered more in Part 3.

Blogging workflow

“kottke.org isn’t so much a thing I’m making but a process I’m going through. A journey. A journey towards knowledge, discovery, empathy, connection, and a better way of seeing the world. Along the way, I’ve found myself and all of you.” — Jason Kottke

There’s no perfect blogging workflow that will work for everyone, all the time. There’s no single process, or even one goal, because everyone gets something different out of blogging. The strength of open standards is being able to pick the best tool for the job, rather than be locked into only one interface.

I personally use a variety of different apps depending on what I'm trying to do:

		If I'm posting a quick microblog post and know what I want to say, I type it into the Micro.blog app for Mac.

		If I'm posting a single photo, I use Micro.blog on my iPhone.

		If I'm posting a bunch of photos like this post from Toronto, I use Sunlit to write a little something for each day.

		If I'm writing a longer post and have it all in my head, so I know I will post it very soon, I type it directly into MarsEdit and publish it to Micro.blog from there.

		If I'm writing a post and I'm not totally sure where it's going, or when I'm going to post it, I type it into Ulysses. This is the majority of my posts. Then I copy and paste it into Micro.blog.

And this only scratches the surface. There's Wavelength for podcasts, Epilogue for books, and some people prefer apps like Gluon, Quill, or Lillihub. This is why we link third-party apps from the posting screen in Micro.blog.

Platforms that only allow a single, official app for browsing and posting — like Twitter and Instagram, and increasingly Reddit too — usually have that restriction because their business is showing ads. By controlling the timeline experience, they can have precise stats on active users and they can insert ads directly into the timeline, which would be more difficult to enforce with third-party apps.

Blogs have no such restriction. Blogs are focused around your identity and your posts, freeing you to use whatever apps for posting fit your needs the best.

Third-party apps for Micro.blog bring their own UI that might be better suited for certain workflows. They also can expand Micro.blog to more platforms, such as the early Android app Dialog designed by Mike Haynes, available before Micro.blog had an official app for Android.

Icro for iOS. Icro from developer Martin Hartl is well-designed, fast, and takes a different approach to some features compared to the official Micro.blog app. In a few ways, it’s better than the app I built. This is exactly what I hoped for. We wanted an official app so that there’s a default to get started, but there should be other great options for Micro.blog users to choose from.

[image:]

Gluon for iOS and Android. Gluon was the first cross-platform mobile app for Micro.blog. It supports multiple Micro.blog accounts and features like local drafts, muting, and themes. Developer Vincent Ritter has documented the development process on his blog through several iterations of the app.

[image:]

Mimi Uploader for iOS. Sam Grover built a new iOS app that is all about batch uploading photos to your blog. I love it because it takes a specific need and provides a really polished workflow just for that. After the upload finishes, you can copy Markdown or HTML to reference all the photos for easy pasting into another app or Micro.blog on the web.

[image:]

MarsEdit for macOS. Long-time Mac developer Daniel Jalkut has continued to improve his app MarsEdit through the years to support multiple blogging platforms. Because it can use the MetaWeblog API that Micro.blog supports, you can post directly to Micro.blog from MarsEdit.

[image:]

Drafts for iOS. Drafts by Greg Pierce of Agile Tortoise is a unique app designed to make it easy to write a quick text note and send it to other apps and services. Drafts comes with a built-in "Send to Micro.blog" action that will open the Micro.blog app on iOS. There is also an actions directory that includes additional actions from Drafts users, including a "Post to Micro.blog" that will publish a post directly to Micro.blog from within Drafts. When you use that action, it will prompt for an app token you can generate in your account on Micro.blog.

[image:]

iA Writer for iOS and macOS. iA Writer can publish to Micro.blog-hosted blogs. It uses the Micropub API, which is Micro.blog's native API for posting.

[image:]

Ulysses for iOS and macOS. Ulysses can post to Micro.blog from iOS and macOS. Ulysses supports publishing to a few blog systems, and you’ll configure them in the Preferences window on the Mac. You can start your longer drafts in Ulysses and then publish out to Micro.blog as needed.

[image:]

 Lillihub for the web. Lillihub is a web-based app by Loura with a unique user experience, built just for Micro.blog. It has prominent links to conversations, bookmarks, and even special support for Micro.blog’s bookshelves feature.

[image:]

One of the things I'm most proud of with Micro.blog is that the API supports standards so you can use a variety of different apps for posting. There are so many different types of blogs out there, there shouldn't just be one way to post.

Why indie microblogging

“That is why you need to own your little place on the Internet: otherwise you are always tilling someone else’s land.” — Om Malik

Across the different types of feeds and APIs there is a guiding principle of openness. We choose standard formats so that it's more likely that our writing and photos will last. We choose open APIs so that many apps can be built, all compatible with each other. These choices mean fewer proprietary formats and less chance for any single company to have too much power over the creation and storage of web content.

There are over 2.8 billion people on Facebook. This is the same number of people in the entirety of China and India combined, the two most populous countries on the planet. All of the posts and user profile data flowing through facebook.com has given the company great power over what people see and what private data is shared.

In the fallout of Cambridge Analytica using personal data from millions of Facebook users, Mark Zuckerberg ended up testifying before Congress. Facebook eventually settled with the Federal Trade Commission for $5 billion in 2019.

Many people thought the fine against Facebook wasn't enough. As Tony Romm covered for The Washington Post, the FTC had originally hoped for not only a much greater fine, but holding Mark Zuckerberg responsible, and placing new rules on how Facebook treated user data. Facebook pushed back:

Facebook leaders further sought to ward off any restrictions on the way they collect data in the first place, another long-sought stipulation by commission Democrats who felt the agency should seek injunctions to change companies’ behavior — not just monitor them for years to come. Privacy watchdog groups, including the Electronic Privacy Information Center, heavily emphasized the need for these “structural remedies” at Facebook for more than a year.

The web needs a course correction, moving away from the concentration of power that gave Facebook so much leverage in negotiations with the FTC. We can't count on meaningful oversight of these massive platforms.

As Ben Thompson of Stratechery wrote, some regulation such as the European Union's General Data Protection Regulation even strengthens the moat these silos have built around themselves. The GDPR could help insulate these ad-based silos from competitors who won't have the same resources to comply, and who will have a more difficult time building up the kind of ad network that Facebook already has:

GDPR will be a pain for Google and Facebook, but it will be lethal for many of their competitors, which means digital ad revenue post-GDPR…will go to Facebook and Google. That, of course, is already happening, which is why Google and Facebook haven’t embraced GDPR; it’s not like they need the help in building a moat, but they will get it none the less.

Instead of trying to directly compete to Facebook's business, more smaller companies should embrace their size and user-focused principles. Laura Kalbag and Aral Balkan started the Small Technology Foundation to build indie tools and encourage developers to consider the ethics in software design. Laura introduced it this way in a blog post:

Small Technology are everyday tools for everyday people designed to increase human welfare, not corporate profits. The opposite of big tech. We’re on a mission to build tools that enable everyone of us to own and control our own place on the Internet.

Millions of tweets are created every day. These are short posts, links, and photos. If we redirect even a small amount of that effort to instead start with indie microblogs, it will be an explosion of new growth for the open web. It will accelerate the maturation of IndieWeb standards, which we'll cover in detail in Part 3.

This is why we should start with short posts. They represent the majority of content on silos like Twitter and Facebook, and they're easy for anyone to create, without the often daunting task of thinking about a whole web site. With better tools and platforms, people can have their own web site as a default outcome when microblogging, rather than as a chore and technical hurdle.

The choices we make about open APIs and RSS feeds are more than implementation details. They are a blueprint for taking back the web.

Interview with Brent Simmons

A bunch of people contributed to the development of JSON Feed, suggesting the structure of fields and the wording in the specification, but along the way it was Brent Simmons who guided the process. He drew from his experience building the feed reader NetNewsWire and having had to deal with all the feeds out in the real world, combined with a sense that to push back against centralization and silos we need a modern approach to feeds.

For this book, I wanted to go back further in time, to talk to Brent about his early work with RSS, XML-RPC, and the UI of feed readers.

Manton: You and I were part of the Mac web server community in the mid-1990s. It was based around the WebSTAR server, originally developed as MacHTTP by Chuck Shotton. I have great memories from that community and wonder if anything stands out to you from those classic Mac OS days before Apple acquired NeXT?

Brent: Those days were amazing. I was relatively young, in my mid-20s, and the web was going off like fireworks — it was this thing that kept exploding, over and over, with new shapes and colors, and great big bangs, seemingly every day. I wanted to be a part of that.

At the same time, I also wanted to write software for Macs, because I loved them. I believed then — and believe now — that the Mac user interface is one of the great intellectual and artist achievements of my lifetime.

And then I found that there this was great community of Mac developers working on web software — WebSTAR was one of the biggest, but it was definitely not alone. When I joined that community, it felt like I had finally come home. Home for the first time.

I can’t help but notice that the themes of my career were there from the beginning: the web, Mac apps, and community.

Manton: You worked with Dave Winer at Userland Software from 1996 to 2002, a very influential time for early blogging and standards. What were your expectations when you joined Userland and what were the first projects you worked on?

Brent: That was my very first software job. I loved UserLand Frontier so much, and had become a member of the community — making things, sharing things, helping other people. When I was offered a job to actually work on Frontier I didn’t even have to think about it: it was a dream job.

I don’t recall what I worked on at first, but pretty soon the entire company was working on porting Frontier to Windows. I don’t think any of us had any particular love for Windows, but at that time it looked like Apple could fail at any minute, and people weren’t buying Mac apps or investing in companies that made software only for Macs. In order to survive, we needed a Windows version.

Once that was done, though, I started working on Manila, which was one of the very earliest of the hosted blogging systems. The first domain was editthispage.com, and anybody could get a free blog. And tens of thousands of people did.

Manila ran in Frontier running as a server, and we ran everything on Windows NT machines. They were just consumer machines from Dell. Dave had a T1 running to his house, and UserLand paid for one to run to my office in Seattle. Dave had a bunch of machines, and I had a bunch. Just consumer-level Dell machines, which we named Honker (it was fast), SuperHonker (it was faster), Nirvana (really amazingly fast), and so on.

My own blog, inessential.com, started out as a Manila blog. I couldn’t very well work on Manila without also having a blog, I figured.

Manton: What was it like working alongside Dave Winer as RSS and XML-RPC were getting off the ground? Could you imagine that these were formats that would still be in widespread use 20 years later?

Brent: XML-RPC I understood right away. It was a very simple XML-based data serialization format — very much a precursor to JSON. It also had a spot for a method name, so it was exactly like calling methods, and getting back a result, but over the web. We used this for a ton of things. So easy.

About RSS I was skeptical at first: it took me longer to get it. While I was working on Manila and other business priorities, Dave spent his time working on RSS readers. I respected him tremendously, and always gave him the benefit of the doubt, but I admit that at first I really wanted more of his help with the other things we were doing.

It was not till Radio UserLand shipped — a post-Manila project, written more by Dave and by Jake Savin, not much by me — that I got the hang of RSS. Radio UserLand was also a blogging app, but it was a blogging app that included a browser-based RSS reader. That’s what got me hooked on RSS.

Did I expect these formats would be in use 20 years later? I don’t think I ever thought about it like that, at all. We were all so busy inventing the future that I never really thought about the future.

Manton: Userland apps from that era like Manila and Radio Userland were native Mac apps, but the primary interface for blogging was through a web interface. Did you ever feel limited in the types of UIs you could build at the time, or was it only later that you wanted to work on a fully Mac-like interface with MacNewsWire, and then later NetNewsWire and MarsEdit?

Brent: It was always my personal dream to work on native Mac apps: I don’t really love doing web UIs. Near the end of my time at UserLand I was working on what we called the Frontier kernel, which was the Mac app itself. The browser-based UI was generated by the Mac app, which included a web server.

But doing native user interfaces was a lot more difficult in those days. We were still writing in C to the Macintosh Toolbox APIs. Doing web UIs was, for us, much quicker and easier — and, well, the kinds of things we wanted to do at UserLand were web things anyway.

Nevertheless, I dreamed of making Mac apps with native Mac UI. After leaving UserLand in 2002, that’s what I set out to do — and Cocoa promised to make this far easier than it had ever been before. I jumped right in, and I’ve never looked back.

Manton: The first version of NetNewsWire had both a reading and posting interface. You then split the posting into its own app MarsEdit, writing at the time that the File menu in a Mac application is like a statement about what is most important in the app — what type of data the user is working with. File → New could create a new subscription, like in a news reader, or it could create a new blog post:

But if cmd-N creates a new weblog post instead, then that says that the most important new thing you create in NetNewsWire is a weblog post, which means it’s more a weblog editor than a newsreader. That would have been the wrong direction.

Following this logic with the File menu, the blog editing could never grow into the best interface for blogging unless it was split into its own app:

The more we thought about it, the more it was obvious that the weblog editor had to be a separate application. In order to improve both NetNewsWire and the weblog editor, we needed to induce mitosis.

Do you ever wonder how the app would've evolved if you had kept reading and posting together in the same app?

Brent: The reason NetNewsWire included a blog editor was because Radio UserLand did, and Radio was NetNewsWire’s only competitor at first.

But, more importantly, I believed in the Radio UserLand model: you’d have stuff coming in from the from blogs you follow, and you’d reply to articles and link to them — not just start brand-new topics. The web is a conversation, after all.

(Also think of Usenet and email apps. You read and write in the same app.)

Note that this was before Facebook and Twitter, both of which have proved that people like having their feed of stuff in the same place where they write. Radio UserLand was ahead of its time in that way.

But I couldn’t see how to do that job well in NetNewsWire. Partly because I was younger and less-experienced than I am now — but also because expectations for Mac apps were quite different then.

In those days, Mac apps were all expected to be what we would now call pro apps. That meant they tended to be powerful and necessarily more complex. To smoosh together a full-featured RSS reader with a full-featured blog editor was a mistake, and it would be a mistake today.

What I would do these days — I’ve thought about it a ton — would be to write something that looks more like Twitterrific or Tweetbot. Instead of a three-paned RSS reader, you’d have one pane, a simple timeline with newest articles at the top. It wouldn’t even have read/unread status.

And, critically, you’d be able to post to your blog with a simple UI. It would be a lot like tweeting or posting to Facebook or Instagram, with the modification that you could write long when you want to.

That kind of app wouldn’t have found users in 2005 — people would have complained that it didn’t do x, y, and z, and they needed those things, and in 2005 they would have been right.

But I think that kind of app could fly today. People have learned — maybe in part from iOS — that casual, fun, easy apps are pretty damn cool, even on Macs.

When I restarted work on NetNewsWire some years back, it was the result of a choice: did I want to make an RSS reader that clearly descended from NetNewsWire, or did I want to write this single-timeline/blog-posting thing? It was a close call, but I picked NetNewsWire-style — and I don’t regret it, because I love this style of RSS reader and lots of other people do too.

I can’t help but note that the Micro.blog app is a lot like what I’ve described, and I think it’s marvelous. (I use it every day!)

But the Micro.blog Mac app doesn’t allow for adding RSS feeds from anywhere, because that’s not the point of the app, and so it’s not exactly the thing I imagined. I wish somebody would write that thing! NetNewsWire is open source, and I encourage people to use NetNewsWire code to get started on their own apps. Please do!

	

	
	Part 3: IndieWeb

“Declaring independence is one thing, building it is another.” — Tantek Çelik, first microblog post on his own site

The idea for IndieWebCamp came out of the Federated Social Web Summit in 2010. Held in Portland, this conference was invite-only, attracting primarily developers who were contributing to platforms such as StatusNet, OStatus, and Diaspora:

A one-day summit by those implementors working on building the federated social web. This means building upon open web protocols that allow for various web projects to interoperate.

Co-organizer Evan Prodromou blogged about how current social networks were too isolated from the rest of the web, with little or no interoperability:

From the point of view of a typical social web site, if you don't have an account on that site, you don't exist. The only way for your friends on that site to interact with you is if they invite you to join the site.

But Tantek Çelik and Aaron Parecki felt the event was too focused on platforms interoperating, especially between larger companies, and not focused enough on personal web sites being able to participate in social networks. The evening of the last day of the conference, they talked about how they could refocus the conversation around owning your own data.

The phrase "indie web" had been used before. John Gruber used it in a tweet a year earlier in 2009:

Mark Pilgrim’s “Dive Into ____” is one of the best brands of the indie web.

Tantek Çelik also referenced "indie web" when commenting on Blogger turning off publishing to self-hosted blogs:

Blogger turned off FTP May 1st http://blogger-ftp.blogspot.com Who/what will step up for the indie web?

These and other mentions of “indie web” weren't coordinated. They reflected a sense that small sites and independent bloggers were an important part of the web even as larger companies and startups began to dominate.

By the end of 2010, Amber Case and Crystal Beasley had joined Tantek and Aaron to help organize an event around the IndieWeb, and the first IndieWebCamp was held in Portland in the middle of 2011.

Over the years, IndieWebCamp as a term describing both the conference and the movement has evolved to simply "IndieWeb". The IndieWeb usually describes the part of the web that is made up of personal blogs and smaller, independent platforms, as well as the community that works to forward the mission and build new tools.

IndieWebCamp as a 2-day event is still the way that most people in the community get together, with several IndieWebCamp events held throughout the year in the United States and Europe. IndieWebCamps are usually over a weekend. The first day is for sessions on topics that are brainstormed by attendees. The second day is a hack day to work on projects.

I had never attended this style of un-conference before my first IndieWebCamp. It's often called BarCamp-style. BarCamp conferences started in 2005 and were originally a reaction to the invite-only FooCamp organized by Tim O’Reilly. BarCamps were open to anyone and often centered around web technologies. The Federated Social Web Summit was also a BarCamp-style conference.

While it’s less structured than a traditional conference that has fully planned sessions and prepared talks, the informal nature of IndieWebCamp lets the conference adapt to what attendees that day actually want to talk about. Session ideas are proposed on sticks notes that can be moved around to schedule the day.

[image: Sticky notes for session planning at IndieWebCamp Austin 2017]

Many of the details in the formats we’ll cover in this book started as open discussions in these kind of sessions, then iterated on throughout the year in the IndieWeb chat and wiki.

Once a year, a larger IndieWebCamp called IndieWeb Summit is held in Portland. Once or twice a month, regular local meetups are held in many cities. Those local meetups are called Homebrew Website Club, as a nod to the tinkerer culture of the old Homebrew Computer Club, or simply IndieWeb Meetup.

IndieWebCamps and meetups can be online too. In the wake of COVID-19, most in-person meetups were cancelled. Instead of IndieWeb Summit 2020, organizers held IndieWebCamp West, an online version using Zoom, chat, and the IndieWeb wiki — many of the same tools that had already been used for in-person events to allow for remote participation.

At IndieWeb Summit 2019, co-founder Tantek Çelik opened the conference to talk about the state of the IndieWeb, including a major story that had been written for The New Yorker by Cal Newport. Tantek said:

We got some amazing press this past year. IndieWeb has hit the mainstream. The New Yorker covered an article — literally titled "Can 'Indie' Social Media Save Us" — and essentially immediately referenced the IndieWeb.

There's one sentence in Cal Newport's article that I keep going back to, and that underscores so much of what the IndieWeb is about:

The Internet may work better when it’s spread out, as originally designed.

This is the spirit of the IndieWeb. It's okay to have centralized services to make software easier for people, because it's too much to expect that everyone should run their own server. The web can be "spread out" on multiple layers: a more diverse set of platforms, so that not all the power is concentrated in a couple massive platforms like Facebook; and more personal domain names, so that even if Micro.blog hosts thousands of blogs, each one has its own identity on the web and can be moved.

The next few chapters will outline the most important IndieWeb formats and protocols. While there is broad agreement on the principles of independent web publishing across the IndieWeb and the origins of Micro.blog, Micro.blog itself was devised separately from the IndieWeb. Increasingly as I was developing Micro.blog, there were so many parallels between what I was building and what the IndieWeb was doing, that I jumped at the chance to incorporate as many IndieWeb protocols and formats as possible.

The IndieWeb had already laid the foundation. There are significant new parts of Micro.blog that were inspired fully by the IndieWeb.

But there are certain areas where we diverge slightly. Micro.blog makes heavy use of JSON Feed, for example, while the IndieWeb often prefers a JSON representation of Microformats. The IndieWeb also documents many post types — RSVPs and check-ins — that are not strictly needed for microblogging.

Indie microblogging and the IndieWeb are complementary. We share the same priorities. I've helped organize three IndieWebCamps in Austin and regularly try to promote standards coming out of the IndieWeb.

The formats and protocols that the IndieWeb community builds on are referred to as "building blocks". There are three building blocks in particular that I consider the pillars of the IndieWeb:

		Microformats: A markup format using CSS class names to add metadata to web pages.

		Micropub: An API for posting to a web site.

		Webmention: A protocol for notifying another web site that you've written about one of their posts.

There are additional APIs, such as WebSub (a way to subscribe to a feed to avoid the delay of polling) and Microsub (for building reader apps). We'll discuss WebSub and Microsub more in Part 5, in the context of decentralization and real-time notifications.

The rest of this part will focus on Microformats, Micropub, and Webmention. But first, let’s go through why we blog — the value of owning our content and making it last.

Permanence

"I cannot imagine the future, but I care about it. I know I am a part of a story that starts long before I can remember and continues long beyond when anyone will remember me.” — Danny Hillis, The Long Now Foundation

The sun never set on July 8, 2020 in Svalbard. Every day in the summer the sun shines on glaciers across the archipelago. Underground, an abandoned coal mine has been repurposed as a storage vault, a remnant of Svalbard’s past as a mining community. It was cold outside at the old mine when trucks arrived carrying boxes from GitHub because it’s always cold, 800 miles inside the arctic circle.

Later in the winter, the northern lights will paint across the sky. Time feels like it slows down, as the days and nights extend for seasons. It’s a fitting environment for archiving code that will last for generations.

Part of the GitHub Archive Program, the GitHub Arctic Code Vault project takes a snapshot of GitHub and stores it in that climate-controlled storage underground in Svalbard. Thousands of repositories from GitHub are encoded on reels of film, like old newspapers on microfilm at a library. In this format and in this environment, it’s estimated that the code can be preserved for 1000 years.

These great lengths were taken with an offline archive because sometimes it seems that nothing lasts on the internet. I could write on my blog for years and the next day get hit by a bus. Without some care and planning, the domain expires, the posts are lost, and it doesn't matter if I had 10 readers or 10,000. To the internet, it's as if it never happened.

The GitHub archive attempted to solve this fragility by making physical copies on those reels of film. No specific computer is necessary to review the code. It can be read with no greater technology than a microscope.

It's like the difference between a physical book compared to an e-book. There is something durable about a simple, cheap book on a bookshelf. One day in our house I found a paperback of an old favorite, Tigana, which I had bought while traveling in Europe. Inside the cover I had written “Oxford, 1999”. I flipped through the pages and out fell a wine label that I hadn't seen in over a decade. It was from a bottle of wine my wife and I had in Greece, sitting on the sand of an island beach the night I proposed.

I had kept it back then because I knew years later it would matter — a memory fused into a piece of paper, waiting. That trip was a story told in events like that one, in personal journals, and through email to family. The digital parts of the story didn't last. The email was purged by Yahoo! Mail during their regular server housecleaning.

Write on Twitter and it mostly vanishes from the internet after thousands of new tweets have pushed it away, unlinked and undiscoverable. But write the same on a scrap of paper tucked into a book and it will be rediscovered again years later.

A self-published novel in PDF on your web site is a ticking time bomb, waiting for your hosting bill to go unpaid. But print 10 copies and give it to 10 friends and it lasts forever.

Patrick Rhone in his Micro Camp 2021 talk compared paper copies to backing up digitally. If you want something to last 1000s of years, paper is better:

If you really want to back up your blog — and make it durable, make it something that will last, make it something that maybe your grandchildren or great grandchildren might read — the best way to do that is to print it out.

The only way to preserve something is to make multiple copies and distribute them. The problem with digital media is that it makes it just as easy to accidentally delete or lose copies as it is to create them. Evolving file formats and storage devices require constant supervision and maintenance, pushing files up each technology bump from floppy disks to CDs to DVDs to hard drives to the cloud. It never ends.

Adrienne LaFrance wrote a story for The Atlantic about lost content on the web, including a Pulitzer Prize-nominated web series that vanished:

The promise of the web is that Alexandria’s library might be resurrected for the modern world. But today’s great library is being destroyed even as it is being built. Until you lose something big on the Internet, something truly valuable, this paradox can be difficult to understand.

Bloggers will keep running into this until we take steps to solve it. It's something Dave Winer has written about, calling the topic "future-safe archives". It's something anyone with a large collection of writing online probably thinks about. How do we preserve the culture and art and stories of our time when the preferred media are so fragile?

One answer is control. By publishing to our own web site, it’s up to us where the posts and replies are copied to, mirrored, and how long they last.

The IndieWeb wiki has a page dedicated to site deaths: centralized content silos that have shut down and taken our content with them. When we cede control to a silo, especially one whose priorities don’t match our own, it becomes more difficult to make copies of our data, or move our posts later without breaking links to them from elsewhere on the web.

If someone isn't maintaining their blog, maybe they don't notice if their domain name or hosting account accidentally expires. If someone isn't posting to a silo anymore, maybe they don't see the notification that it's shutting down and taking their content with it.

Elena Cresci wrote a post for Medium's OneZero about silos purging content, talking to bloggers who had lost important content:

What do we lose when huge parts of what used to be central to our online experience are wiped out? Embarrassing Myspace photos aside, we lose crucial historical context to how we lived our lives online — which is why a number of institutions and groups have arisen to try to archive the web.

As awareness grows about this problem, more and more people have stepped up to help. There are many developers who are quietly extending the life of web content.

The team at the Internet Archive has fixed 9 million broken links on Wikipedia by scanning pages for broken links and updating them to point to the Wayback Machine's copy:

And for the past 3 years, we have been running a software robot called IABot on 22 Wikipedia language editions looking for broken links (URLs that return a ‘404’, or ‘Page Not Found’). When broken links are discovered, IABot searches for archives in the Wayback Machine and other web archives to replace them with.

Mirroring content to other platforms so that it can be preserved isn't a new idea. The Wayback Machine at the Internet Archive launched in 2001.

Interviewed by Jason Calacanis in 2020, Internet Archive founder Brewster Kahle reflected on the mission of the Internet Archive:

The idea of the Internet Archive is to build universal access to all knowledge. Can we make it so that anybody curious enough that wants to have access to anything ever published. A book, or a lecture that was made available, or old web pages. Can we make it so that people could go and learn from it and build on it, and then build new things that are worthy of sharing.

Kayle also emphasized that we need multiple copies of something. Usually there is only one copy, at a publisher’s web site, and Kahle said that “1” is “almost always the wrong answer”.

We need more platforms that can offer mirroring outside the Internet Archive too, and that's what Micro.blog has tried to do. We have a GitHub archiving feature that takes your blog posts and photos and copies them to a GitHub repository. That way they can be served by GitHub, or downloaded and backed up.

Micro.blog also has a checkbox to enable saving posts to the Internet Archive whenever you post them. It doesn't require any technical knowledge or configuration. It's just a checkbox that anyone can use.

[image:]

And finally, Micro.blog itself can archive the contents of web pages that are bookmarked. It downloads the web page, including any linked images or CSS, and stores them on Amazon’s S3 as public links, like a miniature, personalized Wayback Machine.

There are a few simple things you can do to make your blog easier to archive and mirror:

		Use simple HTML, with separate pages for every blog post.

		Avoid features that require JavaScript.

		Limit external dependencies. Serve your photos and other media from the same domain name as your HTML, so that everything can be moved together.

These are all things Micro.blog does by default. Jeff Huang also has a collection of good tips on making a web page last, starting with that first point of using simple HTML that is easily portable to any web host:

I think we've reached the point where html/css is more powerful, and nicer to use than ever before. Instead of starting with a giant template filled with .js includes, it's now okay to just write plain HTML from scratch again.

Permanence on the web is more than the technical side of how to keep our content online. It's also the care we put into it. The willingness to keep typing and click "post", year after year.

Brent Simmons wrote, as he marked the 20th anniversary of his blog:

It's tempting to think that The Thing of my career has been NetNewsWire. And that's kinda true. But the thing I've done the longest, love the most, and am most proud of is this blog.

The great thing about a personal blog is that if you stick with it, your blog will very likely span multiple jobs and even major life changes. You don't need to know where you're going to be in 20 years to start a blog today and post to it regularly. Writing about the journey — and looking back on the posts later to reflect on where you've been — is part of why blogging is still so special.

One of the reasons to own your content is to make it last. When you have control of the text you write or the photos you post, it's up to you whether that content stays on the internet. When you post to someone else's platform, you've given up that control. It's not up to you whether the company that hosts your content will stay in business or change everything to break your content.

If we want to write something that will last, even if it's short, we have to think in years and decades. We don’t need to bury our blog in an abandoned coal mine near the arctic circle, but we do need to be deliberate, making choices about hosting and formats that give us the most flexibility later. If it's worth writing something, it's worth owning it.

Silos

"Big technology platforms are now singular points of failure as much as they are single points of protection against malicious intent.” — Om Malik

There's a bit of a paradox with silos in terms of permanence. Silos that have withstood the test of time, like YouTube, can be stable places to store content. But so many silos fail, the more common outcome is for you to lose everything you've posted there.

The IndieWeb documents several characteristics of a silo, such as requiring an account, only allowing interaction with other silo members, and limiting the type of content you can post.

Not all centralized services are silos. The key trait of silos is isolation. Silos wall-off and limit our control over content, usually by storing all content at the silo’s own domain name rather than allowing personal domain names.

Using silos, we give up control, no longer having power over the URLs of our own content. Frank Chimero wrote about trading away this control for convenience in an essay about web design:

Up to a point, swapping autonomy for ease is a pretty good trade: who wants to run the math on their accounting books or call the restaurant to place a delivery order? But if taken too far, convenience becomes a Trojan Horse. We cede too much control and become dependent on something we can no longer steer. Platforms that promised to bring convenience to a process or intimacy to a relationship now wedge themselves into the transaction as new middlemen. Then, we’re left to trust in the benevolence of those who have the power to mold our dependencies.

Facebook, Twitter, and Instagram are silos that promise ease of use, but they don't mention what we give up by using them. Medium.com has also increasingly become a silo through pivots away from its roots around blogging.

At first I had resisted adding cross-posting to Medium from Micro.blog because Medium might be someone’s primary blog, so it made more sense for you to post directly to Medium yourself. Then you could add the RSS feed to Micro.blog, so that posts show up in the Micro.blog timeline.

But then Medium discontinued support for custom domain names:

As of November 2017, Medium is no longer offering new custom domains as a feature. Instead, you can create a publication on Medium that will live on a medium.com/publication-name URL.

If you can’t even have a domain name for your blog, it’s clear that Medium is much less a true blogging platform and really just a social network for long-form content. It’s a very poor solution for anyone who wants to own their content, but it can still be a natural choice to cross-post your blog posts and reach Medium’s audience.

The IndieWeb has a special acronym for cross-posting: POSSE. Post (on your) Own Site, Syndicate Elsewhere. It emphasizes starting at your own site first before cross-posting to other silos.

When you enable Micro.blog cross-posting to Medium, Micro.blog takes the HTML of your post and sends it to Medium. It supports titled essays or short microblog posts without a title.

Dave Winer wasn't optimistic watching Medium change:

We're in the long tail of the demise of Medium. They'll try this, and something else, and then another thing, each with a smaller probability of making a difference, until they turn it off.

This concern with Medium is representative of many silos. Because they defaulted to Medium-branded user blogs on medium.com instead of your own blog at a personal domain name, there was a risk that if Medium didn't work out as a business, many great posts would disappear along with the service. You might get more readers in the short-term, but it's a bad trade-off when links break and you have to start all over again.

Nick Heer wrote about the "sameness" of Medium sites — how the sites blur together as just pages on Medium's platform. Several prominent sites have left:

Earlier this year, Film School Rejects and Pacific Standard moved away from the platform; this month, the Awl announced that they went back to WordPress with their old custom theme. The Ringer and Backchannel also left Medium. Once again, I can tell those sites apart from each other.

I think Medium has good intentions. But the premise was wrong, with an emphasis on medium.com/@username URLs that aren't portable, and no way to get a custom domain. Medium is now stumbling forward, trying to find the right path because their foundation isn't right.

Different silos will have different strengths and impact on the web, but they usually share these qualities:

		Content lives at the silo's primary domain name — facebook.com or instagram.com — instead of your own domain name.

		Content is not well-connected to the rest of the web. You can link to other content, but the silo encourages you to put many different types of content directly on their platform.

		Content is often interspersed with ads. Decisions about what features a silo will support are then driven by increasing the stickiness of the platform and ad revenue. Some silos like Flickr may be supported by premium subscriptions instead of ads.

		Content can be exported but it's usually in some custom format specific to that silo rather than a common format that could be used across multiple platforms.

Silos should not be the primary place to store your content. If you want to stay engaged with a community on a silo, you should post to your blog and then cross-post to the silo, or comment on posts on the silo in addition to your main web site.

Silos can often make good mirrors for your content. By cross-posting automatically to a silo, you create a copy of your posts that can be used not just for discovery for users on that silo, but also as an extra backup of your posts.

Cross-posting

“Everything has been said before, but since nobody listens we have to keep going back and beginning all over again.” — André Gide

When App.net was first taking off, many microbloggers struggled with how to decide where to post their short-form writing. Should they post some topics to Twitter and others to App.net? Should they cross-post everything to both services? At the time, there was an informal consensus that cross-posting was a cheat. It couldn’t take advantage of each platform’s strengths, and followers might often see the same post twice.

I now believe that cross-posting is a good thing. Photos, as one example, are frequently cross-posted to both Instagram and Facebook. Tweets can be sent to Twitter as well as our own blogs. Years from now you end up with an archive of all your short-form writing at your own domain by default.

Many apps like Instagram or Swarm support and even encourage cross-posting, making it easy to share out from their platforms. It’s good for developers because it helps spread knowledge of the publishing app, and it’s good for writers because it means there are multiple copies of our content.

In her book about the founding of Instagram, No Filter, Sarah Frier described how Instagram used cross-posting to stay connected with other services while growing Instagram’s own network:

What if they made a social network that came with an option to deliver your photos to Foursquare, Facebook, Twitter, and Tumblr all at once? Playing nice with the new social giants would be easier than competing with them. Instead of having to build a network from scratch, the app could just piggyback off already-established communities.

The goal with Micro.blog is for us to get back to our roots with blogging — to write on our own web sites first, not as an afterthought to Twitter. Cross-posting is an important bootstrap for that.

The IndieWeb’s POSSE is an acknowledgement that we don’t always want to completely ignore the big social networks. It’s pragmatic:

POSSE is about staying in touch with current friends now, rather than the potential of staying in touch with friends in the future.

With cross-posting, we can prioritize posting to our own site, while still staying engaged with existing friends. Social networks may come and go, but the canonical version of our posts live at our own indie microblog.

[image:]

It should be as automatic as possible. Post to your blog first, and let platforms like Micro.blog take care of the rest, sending a copy of your posts out to other services.

Setbacks

At one point it looked like Facebook was serious about creating a platform with as much access through APIs as possible. After the 2016 election and Cambridge Analytica, Facebook started to scale back their APIs. It also became unlikely that they would add to the Instagram API, which had never allowed cross-posting to Instagram from other apps, only from Instagram.

Facebook turned off API access for creating new posts unless they were sent to a Facebook page. I adapted Micro.blog to that change, but it already severely limited the usefulness of cross-posting to Facebook. Ryan Barrett, creator of the Brid.gy service, disabled all Facebook support after that change:

Facebook’s moves to restrict its API to improve privacy and security are laudable, and arguably the right idea, but also mean that users can no longer use third party apps like Bridgy to create posts.

After Facebook required Micro.blog to re-apply for even this limited access to posting to Facebook pages, we were rejected and had no choice but to remove the feature. I hoped that by officially saying goodbye to Facebook support we could focus on making the other cross-posting options in Micro.blog more robust.

The dependency on other APIs can already be like a whack-a-mole game of adapting to changing APIs. Early Twitter apps would stop working if they weren't updated to version 1.1 of their API, not to mention the developer-hostile policy changes that could obsolete some apps. There were similar upgrades necessary when LinkedIn redesigned their API.

Facebook went beyond just changing their API. They actually removed basic functionality.

Facebook and Instagram are at odds with the principles of the open web. I never want to remove a Micro.blog feature that users find valuable, but in this case we had little choice, and it’s best for Micro.blog to move on from Facebook cross-posting.

Usernames

When I first set up cross-posting, I decided to dust off a test Account I wasn't using: @manton2. I considered it an experiment and didn't want to continue to post to my original Twitter account.

You may want to use an existing Twitter account and stay active on Twitter, replying to posts and occasionally reading the timeline. Or you may want to disengage with Twitter and have your account as more of a one-way communication from your blog.

Seth Godin, author or Purple Cow and The Dip, among other popular books, has been blogging every day for years. He chooses to not interact with Twitter at all, only mirroring his blog posts to a special @sethsblog Twitter account.

In an interview with Gary Vaynerchuk, Seth talked about why he blogs instead of using social media:

If you want to develop — to get through the dip, to be the best at something — you're going to have to say "no" to a lot of things. [...] When Twitter came along I said, "I could be really good at this, because I'm early." But I would have to use my blogging time to be pretty good at this.

It's about focus. There is not enough time to do everything. By focusing on our blogs, we're creating content that can last, that we can own, but we can still use cross-posting to reach an audience on larger platforms like Twitter.

Inspired by Seth Godin, I renamed my Twitter account to @mantonsblog to better reflect that posts start on my blog. My attention is on Micro.blog, and I'll only occasionally check replies on Twitter.

Setting up cross-posting in Micro.blog

Micro.blog is based heavily around RSS and JSON feeds. As Micro.blog processes the posts in a feed, it adds the posts to the Micro.blog timeline, and it is also during this processing that it can send the posts to other social networks.

To configure cross-posting, click Account → "Edit Feeds & Cross-posting". This page shows the feeds for your account. For sites hosted on Micro.blog, it will usually just include 1 feed, but you can also add feed URLs for external blogs outside of Micro.blog.

[image:]

Next to the RSS feed you would like to automatically cross-post, just click the "Add Twitter" link. You'll be prompted to authorize your Twitter account, or an account on another service.

Once enabled, any new posts (after you enable cross-posting) will be sent to Twitter, with these rules:

		Short posts without a title, and less than 280 characters, will be sent to Twitter unmodified.

		Longer posts without a title, but longer than 280 characters, will be truncated with a link back to your microblog.

		Posts with a title, regardless of length, will be sent to Twitter using the title and a link back to your microblog to read the full post.

		Up to 4 photos embedded in a post are automatically downloaded and attached to your tweet. Photos should be larger than 200×200, to avoid accidentally cross-posting small buttons and tracking images that some blog systems include.

		The first link in a post will be appended as a URL to the end of the tweet.

Similar rules apply for Medium, LinkedIn, and Mastodon, but with different length restrictions since the 280-character limit is specific to Twitter.

You can continue to reply directly on Twitter, and also on Micro.blog. Replies posted directly on Micro.blog aren't included in your microblog RSS feed, so they won't be sent to Twitter.

IFTTT

Another option for cross-posting is a service like IFTTT. This is a good choice if you need to post to platforms that Micro.blog does not support.

IFTTT — short for "if this, then that" — is a great solution for connecting different web services together. With just a few clicks, you can configure IFTTT to take the microblog posts in your RSS feed and automatically send the post content to Twitter.

Start by creating a new applet. For the first part — the "if this" — select the RSS Feed channel. Add a "New feed item" trigger, which will run the IFTTT recipe whenever the RSS feed includes a new post.

[image:]

Enter the URL for your RSS feed. On Micro.blog, the default RSS feeds are at yourdomain.com/feed.xml. If you only want to cross-post from a specific category on Micro.blog, you can use the format yourdomain.com/categories/my-category.xml.

[image:]

The second half of the recipe uses the Twitter channel. Configure the "Post a tweet" action to take the RSS item content and send it to Twitter as the tweet text.

[image:]

In the tweet action, you want to replace the text with the special {{EntryContent}} value. This will take the full text from the RSS feed and include it in the tweet.

[image:]

You can continue to reply and favorite directly on Twitter, and also on Micro.blog. Replies posted directly on Micro.blog aren't included in your microblog RSS feed, so they won't be sent to Twitter.

WordPress

If you're using WordPress, you can also use plugins to handle cross-posting. The Jetpack plugin has a feature called Publicize that connects to Twitter and other platforms. You can enable it in WordPress under Jetpack → Settings → Sharing.

There are also more specialized plugins, such as WP to Twitter.

The IndieWeb-friendly Syndication Links plugin by David Shanske will also keep a record with each post for where it was cross-posted to. That way you can add links or icons from your blog post to the same post on other platforms.

Syndication Links also improves the integration between Micro.blog and WordPress. Chris Aldrich blogged about the recent update:

...this plugin now provides for a per-post decision about exactly what content to send to Micro.blog. It also naturally provides a syndication link from your site back to the Micro.blog post.

Cross-posting is an optional part of indie microblogging. It’s a good way to keep one foot in the door of other social networks if you're not ready to leave them behind, with the added bonus of having an extra copy of your posts on the web.

Owning your content

“One’s legacy depends on one’s impact and what better way to measure impact than by the effect of what you’ve done. But this is measuring against the wrong baseline. The real question is not what effect your work had, but what things would be like had you never done it.” — Aaron Swartz

It's an important part of the mission for Micro.blog to take control back from closed, ad-supported social networks and instead embrace posting on our own blogs again. But what does “owning your content” really mean?

Owning your content isn't just having a copy, whether that's the original or an exported archive from another service. It's more about owning the live version of your content on the web.

Twitter and Facebook are both powerful tools to help people organize. We were reminded of that in the first months of Trump’s presidency, as people worked online to coordinate protests, and in the final months of his presidency, with the Black Lives Matter movement and the death of George Floyd. While these social networks are broken in significant ways, they’re not all bad. They bring people together and expand the reach of posts from our own web sites. That’s why many people embrace cross-posting.

Just as important is the free press. Not just big sites like the New York Times and Washington Post, but also small sites like yours and mine. There are both legal and technical aspects to preserving this right.

It’s not a good foundation to concentrate so much writing into one place like Twitter or Medium. Distributing writing across more web sites protects us if one massive site shuts down. It gives us flexibility to move to the next popular network if one emerges.

Both reporters and bloggers can break a story. Something too important to ignore. But to be taken seriously, it can’t be from an anonymous Twitter account that’s easy to cast doubt on. It has to come from someone accountable who has built a reputation by publishing good work and owning it.

Reputation is built with repetition. Austin Kleon, author of Steal Like An Artist, reflected on his years of blogging at his own domain name:

One little blog post is nothing on its own, but publish a thousand blog posts over a decade, and it turns into your life’s work. This blog has been my sketchbook, my studio, my gallery, my storefront, and my salon. Absolutely everything good that has happened in my career can be traced back in some way to this blog. My books, my art shows, my speaking gigs, some of my best friendships—they all exist because I have my own little piece of turf on the Internet.

Owning your content by having a microblog at your own domain is empowering. Maybe you’re writing about creative projects. Maybe you’re writing about what you had for lunch. Maybe you’re photo-blogging an important trip. Maybe you’re posting from your iPhone at a protest outside the White House.

It doesn’t matter what it is. If it’s happening and worth writing about, it’s worth owning. Now more than ever.

Hosted domains and open source

But what does it mean at a technical level to own our content? Do we have to install WordPress or some home-grown blogging system for it to be considered true content ownership, where we have the source code and direct SFTP access to the server? No. If that's our definition, then content ownership will be permanently reserved for programmers and technical folks who have hours to spend on server configuration.

People get lost in the weeds with running their own server, how to set up cross-posting to other social networks, where to post first, and what formats and protocols to use. But it's actually much simpler than that.

I think in the tech world — and especially as programmers — we tend to make things more complicated than they need to be. We know too much about content ownership, most of it irrelevant for mainstream users.

If you want to control your content on the web, post it at your own personal domain name. That's it. Everything else you want to do is icing on the cake.

Likewise, nothing else can be a replacement for that simple act of using your own domain name. You could write your own blog software with a custom database designed for ActivityPub and run it on a server in your basement. It doesn't matter. Without the domain name, all you have is a pile of icing.

The IndieWeb has a generations chart to illustrate the path from early adopters to mainstream users:

		Generation 1: Development leaders.

		Generation 2: Journalists and bloggers.

		Generation 3: Personal domains managed by 3rd parties.

		Generation 4: People using social networks.

Each generation builds on the one before. It starts with "generation 1" for coders and technical users, then becomes more accessible through platforms that provide built-in features, and eventually with "generation 4" it's just as easy as using a social network.

Eli Mellen highlighted this chart in a blog post about the need to bridge the gap between the technical aspects of IndieWeb tools and more approachable platforms. With Micro.blog specifically, the goal is "generation 4", and I think we're on track to get there.

I want blogging to be as easy as tweeting. Anything short of that isn't good enough for Micro.blog. You'll notice when you use Twitter that they never ask you to SFTP into twitter.com to configure your account. They don't ask you to install anything.

More powerful software that you can endlessly customize will always have its place. It's good to have a range of options, including open source to tinker with. That's often where some of the best ideas start. But too often I see people get lost in the weeds of plugins and themes, lured in by the myth that you have to self-host with WordPress to be part of the IndieWeb.

Owning your content isn't about portable software. It's about portable URLs and data. It's about domain names.

When you write and post photos at your own domain name, your content can outlive any one blogging platform. In all the years of blogging at manton.org, I've switched blogging platforms and hosting providers a few times. The posts and URLs can all be preserved through those changes because it's my own domain name.

If you can't use your own domain name, you can't own it. Your content will be forever stuck at those silo URLs, beholden to the whims of the algorithmic timeline and shifting priorities of the executive team.

For hosted blogs on Micro.blog, we encourage everyone to map a custom domain to their content, and we throw in free HTTPS and preserve redirects for old posts on imported WordPress content. We let you register a new domain name right within Micro.blog, so there are no DNS records to configure.

The goal with Micro.blog is not to be a stop-gap hosting provider, with truly "serious" users eventually moving on to something else (although we make that easy). We want Micro.blog hosting to be the best platform for owning your content and participating in the Micro.blog and IndieWeb communities.

Microformats

“The world isn't run by weapons anymore, or energy, or money. It's run by little ones and zeroes, little bits of data.” — Cosmo from Sneakers

In January 1996, I gave a conference presentation with my friend Travis Weller about a web server framework we had written inspired by MCF. MCF stands for Meta Content Framework and was led by R.V. Guha, who worked at Apple at the time, creating a tool called HotSauce for visualizing nodes of data in MCF. HotSauce even got stage time at Macworld. It was this popularity through Apple that Travis and I noticed.

[image:]
Screenshot from: https://personalpages.manchester.ac.uk/staff/m.dodge/cybergeography/atlas/info_spaces.html

MCF looked like a transformational step forward for the web. I was young and excited and ready to believe in the future. Years later these ideas would evolve to become RDF — the Resource Description Framework — and encouraged by the W3C:

RDF extends the linking structure of the Web to use URIs to name the relationship between things as well as the two ends of the link (this is usually referred to as a “triple”). Using this simple model, it allows structured and semi-structured data to be mixed, exposed, and shared across different applications.

RDF was the basis for RSS 1.0. At the launch party for Creative Commons, Aaron Swartz explained the value of RDF this way:

Right now you can only ask a search engine one question: "What pages have these words in them?" When pages include RDF metadata, you will be able to ask more advanced questions like "What’s the current temperature in California?"

There were great people like Aaron working on this, but RDF and the so-called Semantic Web haven't lived up to our original expectations.

Even some early advocates had become doubtful. Tim Bray wrote in 2003:

The RDF version is harder to read, harder to write, and doesn't offer enough payback to make this worthwhile.

It tends to trade away real-world progress today for a more complicated vision of the future that always seems illusive. Even ActivityPub, which has growing support thanks to Mastodon, seems unnecessarily burdened by JSON-LD, a sort of JSON flavor of RDF.

The "LD" in JSON-LD stands for "linked data". RDF and JSON-LD attempt to add structure and meaning to web pages and APIs. With the types of data and relationships between documents more fully described, computers could in theory query the entire web as a database, answering our questions or sharing data between services.

Tim-Berners Lee, James Hendler, and Ora Lassila co-authored a paper for Scientific American in 2001, laying out this vision for the Semantic Web:

The Semantic Web will bring structure to the meaningful content of Web pages, creating an environment where software agents roaming from page to page can readily carry out sophisticated tasks for users.

Following up with a TED Talk in 2009, Tim-Berners Lee said that it's not just about metadata, but the relationships between data:

Data is relationships. It's got: this person was born in Berlin, Berlin is in Germany. And when it has relationships, whenever it expresses a relationship, then the other thing that it's related to is given one of those names that starts http. So I can go ahead and look that thing up.

Data about the content in web pages is not a big stretch from today's web. It's tangible because we can all see that content in our web browser. The relationships between data, thinking about how a machine would crawl through linked data and derive meaning from it, seems farther removed from what we need to build for the web.

More recently there has been a new push with support from Tim-Berners Lee to bring these ideas to social networks and new apps. The Solid spec frequently references RDF and JSON-LD.

In a FAQ for the AT Protocol, Bluesky writes about why they chose to create a new protocol instead of using ActivityPub, and why a new format instead of RDF:

RDF is intended for extremely general cases in which the systems share very little infrastructure. It’s conceptually elegant but difficult to use, often adding a lot of syntax which devs don't understand. JSON-LD simplifies the task of consuming RDF vocabularies, but it does so by hiding the underlying concepts, not by making RDF more legible.

AT Protocol instead uses a schema system called Lexicon. It also uses JSON but is a little more concise and readable than JSON-LD. If you look at JSON responses from Mastodon, which uses JSON-LD, there is significant bloat, often with JSON-LD’s @context field taking up more space in the response than the actual content.

There are some people who have really interesting, unique needs for more complicated structured data. Those people can continue to use RDF and JSON-LD. The rest of us should use something simpler.

Let me underscore the timeline at the beginning of my story, when my friend Travis and I were giving that presentation about MCF. That was over 25 years ago. There are web developers working today that have lived their entire lives in the span of time since these ideas first started appearing.

In a post in 2001 titled Metacrap, Cory Doctorow had cut through some of the optimism:

A world of exhaustive, reliable metadata would be a utopia. It's also a pipe-dream, founded on self-delusion, nerd hubris and hysterically inflated market opportunities.

I don't see evidence that the Semantic Web has made much progress in those years. Maybe Solid will finally tie everything together. But the original web exploded in popularity in part because it lacked structure. It was easy to contribute to building the web because the web was so forgiving about structure.

Before we try to build a new web, let’s fix the old web first. More people should be publishing content on their own web site.

Before we try to universally categorize all data, let's improve the metadata in the most basic of resources on the web. There's value today in better describing data like a person's name, their photo, when a web page was published, or the title of a blog post.

IndieWeb co-founder Tantek Çelik called this the lowercase semantic web. Smaller, less ambitious than uppercase Semantic Web, but still very useful for building apps today.

There are also semantics built into HTML 5. Elements like <time> and <section> that provide more meaning to the structure of web pages. This is plain old semantic HTML. Not glamorous, but useful and built in to web browsers.

It's usually the simple formats that have the best chance to succeed.

Microformats provide a way to add metadata to a simple web page without creating a new format. The metadata is in the HTML itself instead of alongside it. It doesn't attempt to be as comprehensive as RDF, and so because of its simplicity it's lightweight enough to add directly to HTML.

It also fulfills a core IndieWeb principle to prioritize what people actually see. From the IndieWeb's principles page:

Use & publish visible data for humans first, machines second. See also DRY.

Don't repeat yourself. Don't recreate all of the text that is already in the HTML, duplicating it in a separate RDF file just so that new metadata can be added to it.

Microformats actually predate IndieWebCamp by several years. You can trace it back to 2003 and the introduction of XFN, the XHTML Friends Network, by Tantek Çelik, Matt Mullenweg, and Eric Meyer. XFN used simple attributes on blogrolls — lists on your site of other blogs you liked to read — to describe your relationship to those bloggers. Each link’s rel attribute was set for whether that person was a friend, acquaintance, co-worker, or someone you had met:

Someone

Tools could be built to crawl sites that used XFN, creating a social graph across the web. XFN was a topic in sessions at SXSW Interactive, including a panel that described the potential scope of blog-based social networks:

...simple, user-centered technology that has turned the blogosphere into a giant decentralized social network

In 2004 at the O'Reilly Emerging Tech conference, Tantek Çelik and Kevin Marks gave a presentation where the "microformats" term was coined. One of their slides gets to the heart of the IndieWeb, that we can build what we need on simple formats in today's web rather than invent something new:

adding semantics to today's web

rather than create a future web

Blog post dates are a good example. Adding a little extra metadata doesn't change the display or complexity of the HTML, but makes a simple date machine-readable so that scripts and apps parsing the HTML can be certain about where the date appears and in what format. The displayed, human-readable version of the date can still be anything, or localized.

Consider a date in an HTML paragraph tag:

<p>Jan 2, 2017</p>

Add the Microformats dt-published class name to note that this text is the published date for the post:

<p class="dt-published">Jan 2, 2017</p>

Then add a datetime attribute to provide the date in a standard format that is easy to parse by a script or app:

<p class="dt-published" datetime="2017-01-02 10:30:00 +0000">Jan 2, 2017</p>

It can be further improved by using the time element from HTML:

<p><time class="dt-published" datetime="2017-01-02 10:30:00 +0000">Jan 2, 2017</time></p>

Extracting the text content from a page is also simpler with Microformats. Where before you might have:

<div>
 <p>This is some post text.</p>
 <p>More text here.</p>
</div>

With Microformats it becomes:

<div class="e-content">
 <p>This is some post text.</p>
 <p>More text here.</p>
</div>

This might seem unnecessary for a simple web page, but imagine the post surrounded by a sidebar, navigation, ads, footer, and other content. Marking up exactly where the real post text is using e-content makes it much easier to find the content.

We can build on this by wrapping the content with h-feed and one or more h-entry elements to make an HTML list readable like a traditional feed.

The idea behind Microformats is that you don’t need separate RSS or JSON feeds if all the information is right in the web page. Let’s say we have this list of posts:

 <p>Hello world.</p>

 <time>06 May 2017</time>

Add class names via Microformats and it becomes:

<ul class="h-feed">
 <li class="h-entry">

 <p>Hello world.</p>

 <time class="dt-published" datetime="2017-05-06 20:50:00 +0000">06 May 2017</time>

Now a feed reader can parse the web page directly and infer exactly what everything is. There are classes for users, profile photos, replies, bookmarks, and more.

Microformats today is technically the 2nd version of Microformats, commonly referred to as MF2. Many of the Microformats 2 classes evolved from an add-on specification to Microformats called hAtom. hAtom borrowed from the Atom feed format, applying Atom's XML element names to HTML classes. You may still see web pages that reference these older names such as hentry (without the hyphen) and entry-content (instead of e-content).

	
		
				
				Microformats 1

			
				
				Microformats 2

			
		

	
	
		
				
				hfeed

			
				
				h-feed

			
		

		
				
				hentry

			
				
				h-entry

			
		

		
				
				entry-title

			
				
				p-name

			
		

		
				
				entry-content

			
				
				e-content

			
		

		
				
				published

			
				
				dt-published

			
		

		
				
				author

			
				
				p-author

			
		

	

The prefix used in Microformats 2 describes the type:

		p- is for a plain-text property.

		u- is for a URL.

		dt- is for a date and time.

		e- is for when the value is all of the HTML inside an element.

Properties are added to child elements of a root element such as h-entry or h-card.

IndieWeb-compatible tools today are always built with Microformats 2 in mind, although some will also fall back to reading Microformats 1 for compatibility with older web pages.

The classes in Microformats were expanded as needed. In 2008, in-reply-to was proposed by Sarven Capadisli to indicate that a post was a reply to another post, inspired by RFC 4685, an extension for adding replies to the Atom spec.

<div class="h-entry">
 Replying to this post
 <div class="p-name p-content">Great post!</div>
</div>

Replies are common because our goal is to get web sites talking to each other. We cover this and the Webmention protocol in a later chapter.

Testing your Microformats

Because Microformats are interspersed in an HTML file along with content and other tags, not as a separate file with only the metadata, it can sometimes be more difficult to tell at a glance if you have all the Microformats you need. It's helpful to have a simpler view of the structure of the Microformats, with everything else in the HTML removed.

These tools can help check the Microformats in your web pages:

		Aaron Parecki’s Pin13 includes a Microformats helper tool that takes a URL and downloads the HTML source, parsing it for Microformats.

		Monocle preview parses HTML that uses h-feed, presenting a timeline view of what the posts will look like.

It often takes just minutes to sprinkle some Microformats classes into your web pages. Start on your home page, so that your profile information is available to other IndieWeb apps, and then add Microformats markup around your posts too. Some basic support of Microformats will be important when integrating with other IndieWeb building blocks like Webmention.

Building blocks

“This particular disposition of the secondary projections relative to the primary projections which is the essential feature of the invention provides for a vast number of possible combinations of adjacent bricks.” — LEGO patent

Microformats are included directly in your blog’s HTML. Other IndieWeb services will be external — not embedded in your web pages, only linked from them.

Most of what we think of as the core IndieWeb building blocks have their own specification, and multiple pages on the IndieWeb wiki. There's one standard that's so simple it doesn't need its own spec: the link tag. It's less a building block and more like glue, connecting different IndieWeb services to your blog.

Need to tell feed readers where your RSS or JSON feeds are? That's a link tag on your home page, invisible for readers but quietly forming a relationship between documents — that the referenced JSON Feed is an “alternate” of the current web page:

<link rel="alternate" type="application/json" src="/feed.json">

We’ll outline several standards that all work together this way, linking your home page to API implementations using the link tag. The link tag connects those APIs to your blog, whether it's a static site that needs external, dynamic applications for some interactions, like receiving comments via Webmention, or whether most of the functionality is hosted together in a single system like WordPress.

Linking building blocks makes your blog more modular. Individual components can be upgraded or replaced without starting over. From the IndieWeb wiki:

From a systems perspective, designing a modular system is harder than designing a monolithic system; however over time a modular system has a much better chance of evolving and adapting to changing needs and a diversity of uses.

We can pick and choose what our blog needs, keeping the system lightweight and easier to maintain. If you want to receive comments on your blog, there are multiple Webmention libraries or platforms you can consider plugging in, or you can leave that functionality out altogether.

The more technical chapters in this book show examples of API web requests and responses. Web requests between a client and a server use HTTP, the hypertext transfer protocol. Web browsers like Safari and Firefox use HTTP, and API clients like Micro.blog also use HTTP.

There are 2 common HTTP methods:

		GET: downloading a web page, or requesting some JSON.

		POST: sending new data to a server.

In the code examples in this book, we'll include GET and POST as well as any additional required HTTP headers, each on their own line. To request an authorized resource and ask for a response in JSON, a request might look like this:

GET /example/path
Authorization: Bearer 12345
Accept: application/json

The “Bearer” value is a token that represents the signed in user. The “Accept” type is the format that we'd like the response returned in.

To send data to a sever, we use a POST. Sometimes that is URL-encoded form data, like this:

POST /example/path
Authorization: Bearer 12345
Content-Type: application/x-www-form-urlencoded

content=Hello%20world.

And sometimes that is full JSON in the request, like this:

POST /example/path
Authorization: Bearer 12345
Content-Type: application/json

{
 "content": "Hello world."
}

The “Content-Type” header is to tell the server what format we are sending data in for POST requests.

IndieAuth

“My approach to security, and I think this is true for others involved with OAuth, is to strive for the best security that will actually work.” — Blaine Cook

OAuth is a standard for signing in to web apps. It is used by a platform such as Twitter to grant another app access to a user's data or the ability to post to that user's account. All major platforms like Twitter, Facebook, GitHub, and Medium have adopted a version of OAuth for their API.

An important goal with OAuth was to discourage apps from needing to ask for your password directly. OAuth allows apps to get access to your information while making sure that you only ever enter your password in one place: on the platform where your account was created.

IndieAuth is an IndieWeb-friendly method of authentication. IndieAuth is based on OAuth, but with a couple important twists that make it work for independent blogs:

		Identity is built around domain names. When you use IndieAuth, you sign in with your domain name, not an email address or username.

		Discovery is handled through a <link> tag on your web site. This lets you delegate authentication for your domain name to other services.

When all our content is hosted at our domain name, with the incentive to keep that domain name for years or decades, that domain name becomes our identity on the web. If it's our identity, why not use it for signing in with apps that need to authenticate us?

A username might be different on different platforms. A domain name for your blog is always you.

As services became more centralized, they also consolidated. Photos to Flickr. Videos to YouTube. Twitter and Facebook for social media. With a small number of services, it wasn't too difficult for an app to support at least a few popular platforms for sign-in.

Some services included a hard-coded list of authentication providers, sometimes half a dozen different social networks that you could choose to log in with. Even now, it’s common to see 3-4 services listed, such as in this sign-in screen from Vrbo:

[image: Screenshot with sign-in buttons]

If an app wanted to post to both Twitter and Facebook, for example, it could register with those platforms. The developer of the app would usually need to fill in some details about their application, often requiring approval. By registering, apps would get a "client ID" and "client secret" that could be used with OAuth.

Most modern platforms require this registration before their API can be used. While this helps prevent abuse of the API, it also locks down the platform, giving the platform owner control over what types of apps can be built.

An app uses the "client ID" and "client secret" as part of the flow for building sign-in URLs and handling callbacks from the platform back to their app. After the user approves the app, the app receives separate authentication tokens that can be used to make requests to the platform on behalf of the user.

With a more distributed web, there won't just be a few popular sites to register an app with. There will be many thousands of sites. There needs to be a shortcut around registration.

In adapting OAuth for the IndieWeb, Aaron Parecki summarized the problem this way:

The first major hurdle to overcome is the need for the developer to register to get API keys for the service. In a world where everyone's own website is its own OAuth server, it's obviously not practical to have an app developer register API keys at each.

The solution is to replace the "client ID" — which is usually a string of random numbers that the developer gets when registering their app — with something the developer already knows: the URL for their app. The URL for their app can also be used to retrieve an image for the app, and both the image and URL can be shown to the user so they know which app is requesting access.

IndieWeb-friendly apps like OwnYourSwarm use IndieAuth to sign in to Micro.blog. First, the user is asked to enter the domain name for their Micro.blog account:

[image:]

Next, Micro.blog fetches some information from their site to know which service is handling authentication for the user. For OAuth, API URLs would be provided in a platform's API documentation and the developer would use those URLs in their code. For IndieAuth, because there are many web sites and authentication providers, these URLs are stored in link tags on the site's home page:

<link rel="authorization_endpoint" href="https://micro.blog/indieauth/auth" />
<link rel="token_endpoint" href="https://micro.blog/indieauth/token" />

The user is then directed to sign in and approve access to the app OwnYourSwarm:

[image:]

Behind the scenes, an app like OwnYourSwarm is using the authorization_endpoint and token_endpoint URLs retrieved from the user's link tags to request tokens that can be used to make API requests, such as posting a new blog post to the user's blog.

The next step is to build a URL based on the authorization_endpoint that the client app will open in a web browser for the user. This URL will have several parameters appended to it:

		me: the user’s blog URL.

		redirect_uri: a URL to redirect back to the client app.

		client_id: a URL to identify the client app.

		state: a random string that we can use to check the redirect for tampering.

		scope: the type of permission we need, such as “create” for creating new blog posts.

		response_type: this value should always be “code”.

Appended together, the important parts of the URL might look something like this if we are using Micro.blog’s authorization endpoint:

https://micro.blog/indieauth/auth?me=https://mydomain.com/&redirect_uri=https://anotherapp.com/callback&...

That URL is then opened in a web browser and the user can confirm giving access to the calling client app.

When the user approves access, they are redirected to a new URL that is based on the redirect_uri parameter. That URL will have 2 parameters appended to it:

		code: the authorization code.

		state: exactly the same value that was originally passed by the client app, so that it can be verified to match.

Now the client app can take the code value and send it with an HTTP POST to the token_endpoint we retrieved from the link tag earlier.

POST /indieauth/token
Content-type: application/x-www-form-urlencoded
Accept: application/json

grant_type=authorization_code&code=ABCDEFG&client_id=https://...&redirect_uri=&https://…&me=https://yourdomain.com/

The response from the token endpoint looks like this:

{
 “access_token”: “ABCDEFG”
 “token_type”: “Bearer”,
 “me”: “https://yourdomain.com/“,
 “scope”: “create”
}

Now the client app can save this access token and use it in other IndieWeb API calls, such as using Micropub to post to the user’s blog.

In these examples, it's Micro.blog's own IndieAuth implementation that will handle signing the user in, but the user could delegate authentication to an external service.

IndieLogin.com facilitates this delegation by verifying that your identity matches between your blog and common platforms like Twitter and GitHub.

To get started, make sure you have a rel="me" link on your blog's home page. These use link tags to point to your profile page on those platforms:

<link rel="me" href="https://twitter.com/your-username" />
<link rel="me" href="https://github.com/your-username" />

If you're using a Micro.blog-hosted blog, Micro.blog can also set these for you under the Account → "Edit Apps" page:

[image:]

You will need a link back to your web site on those other platforms' profile pages. For example on GitHub, click on your profile icon, then choose Settings and fill in your blog URL:

[image:]

When you use IndieLogin.com to sign in, it can check that these profile links match:

		That your blog links to a platform like Twitter or GitHub that you'll be using to authenticate.

		That your profile on that platform also links back to your blog, confirming your blog and the profile are owned by the same person.

This method of authentication is also called RelMeAuth.

IndieLogin.com doesn't need to do this for Micro.blog-hosted blogs because Micro.blog itself is already an IndieAuth provider.

If you're building a simple web app that needs to verify someone's identity, you can link to IndieLogin.com to handle the authentication for you. IndieLogin.com will use either RelMeAuth or a built-in IndieAuth provider, such as Micro.blog.

In its simplest form, create a button in your web app that will link to IndieAuth. You should include hidden fields for your client ID, callback redirect URL, and a random number state that can be verified to make sure the request originated on your own form:

<form action="https://indielogin.com/auth" method="GET">
 <button type="submit">Sign in with IndieAuth</button>
 <input type="hidden" name="client_id" value="https://your-app.com/" />
 <input type="hidden" name="redirect_uri" value="https://your-app/callback" />
 <input type="hidden" name="state" value="123456" />
</form>

After clicking the button, the user will be taken to IndieLogin.com to enter their domain name. IndieLogin.com will do all the work to verify the user's identity, and then redirect back to your callback with a code value:

https://your-app.com/callback?code=ABCDEFG&state=123456

From there, your web app should make a request to IndieLogin.com with the code to retrieve information about the user:

POST https://indielogin.com/auth
Content-Type: application/x-www-form-urlencoded
Accept: application/json

code=ABCDEFG&redirect_uri=https://your-app.com/callback&
client_id=https://your-app.com/

The response will have the user's verified web site URL:

{
 "me": "https://manton.org/"
}

See the IndieLogin.com API page for more options on working with IndieLogin.

IndieAuth can be used to grant access to an API that can handle anything that is appropriate for that platform, but in practice the most common API call is to create a new blog post. Creating new blog posts is handled with the Micropub API.

Micropub

“The technical folks in the blogging world have learned a lot of the past few years about RSS and the blogging APIs—about what works well and what doesn't. And, despite the efforts that have gone into certain directions, we feel it'd be unfortunate this early in the game to be married to a certain direction just because we started out that way when we didn't know as much.” — Evan Williams, Blogger API post from 2003

Micropub is one of several important IndieWeb building blocks, answering the question: what would a posting API look like if we started over, stripping away everything except the most basic requirement of sending post text to a server, and then build on top of that foundation when clients and servers in the real world need more?

Many protocols attempt to be so comprehensive that they start off complicated and difficult to implement unless all at once. They over-specify everything that might be needed, even if there is no real-world example in use for it yet. Micropub isn't like that.

Learning from XML-RPC and AtomPub

To understand how Micropub came to be — first created in 2015 and then formalized as a W3C recommendation in 2017 — we should rewind back in 2001 with the Blogger API and XML-RPC.

For my interview with Brent Simmons in Part 2, Brent talks about how easy XML-RPC was. And with good tools that understood XML, like the Frontier scripting environment that Brent worked in, it was easy. All the complexity of serializing data structures into XML was hidden from you.

But actually inspecting the data passed between client and servers revealed an admittedly ugly format that would stump most developers today as being needlessly verbose. Even worse, there was no way to build a script to process these requests on the server without bundling in an XML-RPC framework.

Common data types such as integers, strings, and structs are encoded with rules outlined in the XML-RPC specification. To create a new post with the words "Hello world", the XML-RPC request might look like this:

<?xml version="1.0"?>
<methodCall>
 <methodName>blogger.newPost</methodName>
 <params>
 <param>
 <value><int>app ID</int></value>
 </param>
 <param>
 <value><int>blog ID</int></value>
 </param>
 <param>
 <value><string>manton</string></value>
 </param>
 <param>
 <value><string>mypassword</string></value>
 </param>
 <param>
 <value><string>Hello world.</string></value>
 </param>
 <param>
 <value><boolean>1</boolean></value>
 </param>
 </params>
</methodCall>

Note that the username and password are passed in the clear. There was no separate mechanism at the time, such as OAuth or IndieAuth, for authenticating a user and using more secure tokens with each request.

Subsequent blogging platforms extended the Blogger API with their own features. Instead of blogger.newPost, Movable Type had their own mt.newPost with similar parameters, adding a title field. WordPress had wordpress.newPost, and still supports XML-RPC today.

To try to unify some of these improvements in a vendor-neutral standard, Dave Winer proposed the MetaWeblog API. MetaWeblog switched to passing content as structs, which could more easily be extended with additional fields, and added an image upload API, metaWeblog.newMediaObject. Dave patterned the field names after RSS:

The MetaWeblog API uses an XML-RPC struct to represent a weblog post. Rather than invent a new vocabulary for the metadata of a weblog post, we use the vocabulary for an item in RSS 2.0. So you can refer to a post's title, link and description; or its author, comments, enclosure, guid, etc using the already-familiar names given to those elements in RSS 2.0.

Dave wasn't the only one who hoped to bring consistency between feed formats and a blogging API. A couple of years later, AtomPub was created based on Atom feeds.

Ben Trott of Six Apart, makers of Movable Type, blogged at the time about the benefits to basing an API on the Atom feed format, which back then was called Echo:

Benefits to developers: using the same data model and serialization for syndication, archiving, and editing simplifies the development of tools to work with (produce and consume) these formats, for obvious reasons: code written to produce an item in an Echo feed, for example, can also be used for producing data sent in an API request or packaged up for archiving.

AtomPub was adopted in Blogger but is not supported in any other modern blogging platforms. In early 2020, MarsEdit developer Daniel Jalkut announced that he would also be phasing out support for posting to Blogger.

As XML-RPC was falling out of style, Roy Fielding coined the term "representational state transfer", or REST, to describe the design of an API that acted on multiple web resources, retrieved and updated with standard HTTP methods such as GET, POST, and PUT. REST stepped back from the complexity of how requests were encoded in XML-RPC.

Most of today's platforms follow a REST style, but there was no open blogging API proposed using REST. There was also a move away from XML, with most new APIs using JSON.

WordPress still supports the XML-RPC API but has its own, WordPress-specific JSON API. Silos like Twitter, Facebook, and Medium create their own platform-specific API, or no posting API at all. Enough years had passed that the IndieWeb community could now take a fresh look at blogging APIs, learning from past formats to create a new open API that wasn't tied to any platform.

Intro to Micropub

Micropub is a W3C recommendation and Micro.blog's native posting API. In an effort to make basic posting as simple as possible, while still allowing more advanced functionality, there are 2 formats for Micropub:

		Form-encoded. The easiest way to get started and useful from any programming language or scripting tool.

		JSON. With field names and structure based on conventions from Microformats.

Unlike many REST-based APIs, Micropub uses a single URL endpoint with multiple parameters to specify actions such as editing or deleting an existing post. This makes it easier to drop an implementation of Micropub into an existing web site or web application. This main endpoint is discovered by looking for a link tag in the blog's home page HTML:

<link rel="micropub" href="https://micro.blog/micropub">

Requests will need an authentication token. This is usually provided by IndieAuth, although Micro.blog also lets users generate new tokens for specific apps under their account. When you have a token, it's set in an Authentication: Bearer HTTP header.

Now that we have the endpoint and auth token, we can use form-encoded parameters to create a new post. The following Micropub request creates a new post with the text "Hello world."

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/x-www-form-urlencoded

h=entry&content=Hello%20world.

This request requires so little that it can even be used directly from the curl command line:

curl -d "h=entry" -d "content=Hello world" -H "Authorization: Bearer 123456789" "https://micro.blog/micropub"

This shows the value of embracing simple HTTP requests. Calling an XML-RPC API from curl would be much more difficult.

When creating a new post, Micropub also accepts a "name" parameter to give the post a title:

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/x-www-form-urlencoded

h=entry&name=Hello&content=This%20post%20is%20longer.

The h=entry may look familiar from Microformats. Micropub follows Microformats naming conventions. This table compares the Microformats class names with the Micropub fields:

	
		
				
				Microformats 2

			
				
				Micropub API

			
		

	
	
		
				
				h-entry

			
				
				h=entry

			
		

		
				
				p-name

			
				
				name=

			
		

		
				
				e-content

			
				
				content=

			
		

		
				
				dt-published

			
				
				published=

			
		

	

Uploading photos

To upload a photo to a Micro.blog-hosted blog, first query Micropub by sending a configuration request with the q parameter, which will return the media endpoint:

GET /micropub?q=config
Authorization: Bearer 123456789

This will return a response like:

{
 "media-endpoint": "https://micro.blog/micropub/media"
}

The media endpoint accepts a multipart/form-data upload with a file part containing the JPEG image data. Micro.blog will send back an HTTP 202 response while the image is being copied to the published site. It may take a few seconds for it to be available at the URL in the response:

HTTP/1.1 202 Accepted
Location: https://username.micro.blog/uploads/123.jpg

Now that you have the URL for the uploaded photo, you can add a photo parameter to a new post. To set alt text for the photo, also include an mp-photo-alt parameter.

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/x-www-form-urlencoded

h=entry&content=Hello%20world.&photo=https://...&mp-photo-alt=Description%20here.

The alt text parameter is not part of the original Micropub spec, but was instead proposed later through an extension to Micropub. In fact, the spec itself outlines only the initial framework for request and posting basics. Many useful parts of Micropub come from conventions used in the IndieWeb community. Once there are a few client and server implementations of a proposal, it is considered stable.

More complex posts

The JSON variation of Micropub is needed for sending more complex representations of a blog post. For example, sending HTML or location check-in information. It is also used for querying a list of posts.

Our simple form-encoded example from earlier would look like this when formatted with JSON:

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/json

{
 "type": ["h-entry"],
 "properties": {
 "content": ["Hello world."]
 }
}

To create a new post using HTML, clients can be explicitly about the format by adding an html field to the content:

 POST /micropub
 Authorization: Bearer 123456789
 Content-Type: application/json

 {
 "type": ["h-entry"],
 "properties": {
 "content": [
 {
 "html": ["<p>Hello world.</p>"]
 }
]
 }
 }

Note that most values when using JSON with Micropub are actually arrays, surrounded by [and], even if there can only be 1 item in the array. While this makes the simplest requests more verbose and harder to read than the form-encoded version of Micropub, it also allows for richer types of data.

When using the JSON version of the Micropub API, Micro.blog can store location data with a blog post, including venue name, URL, latitude, and longitude.

To just send coordinates, use the location property:

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/json

{
 "type": ["h-entry"],
 "properties": {
 "content": ["Texas Book Festival."],
 "location": [
 {
 "type": ["h-adr"],
 "properties": {
 "latitude": [30.273892650534542],
 "longitude": [-97.74060666521329]
 }
 }
],
 "published": ["2019-10-27T14:51:32-05:00"]
 }
}

If you are making a check-in post with venue information, use the checkin property:

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/json

{
 "type": ["h-entry"],
 "properties": {
 "content": ["Texas Book Festival."],
 "checkin": [
 {
 "type": ["h-card"],
 "properties": {
 "url": ["https://foursquare.com/v/4d8a30f199c2a1cd53508bd7"],
 "latitude": [30.273892650534542],
 "name": ["Texas Capitol Grounds"],
 "longitude": [-97.74060666521329]
 }
 }
],
 "published": ["2019-10-27T14:51:32-05:00"]
 }
}

Using JSON is helpful for other types of applications too. IndieBookClub is a service that lets people easily post about a book they are reading. It prompts for the book’s title and ISBN, and then formats that as a Micropub request to your server using the read-of property, which contains details about the book:

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/json

{
 "type": ["h-entry"],
 "properties": {
 "summary": ["Currently reading: The Tombs of Atuan by Ursula K. Le Guin, ISBN: 9780689845369"],
 "read-status": ["reading"],
 "read-of": [
 {
 "type": [" h-cite"],
 "properties": {
 "name": ["The Tombs of Atuan"],
 "author": ["Ursula K. Le Guin"],
 "uid": [" isbn:9780689845369"]
 }
 }
]
 }
}

Micro.blog recognizes these “read of” posts and does some lightweight processing on the post text, such as linking the book title. Because IndieBookClub provides a summary field, not all Micropub servers need to understand these types of requests. Other servers can simply fall back on using the summary and ignore the read-of properties.

Other actions

Micro.blog accounts can have multiple blogs defined for a single username. You might have your main blog, a photos blog, and a test blog to try out design changes, for example. You can use the Micropub extension mp-destination to specify which blog to post to when making a request.

A list of defined blogs will be returned from the q=config request we used to get the media endpoint for uploading photos:

{
 "media-endpoint": "https://micro.blog/micropub/media",
 "destination": [
 {
 "uid": "https://manton.micro.blog/",
 "name": "manton.micro.blog"
 },
 {
 "uid": "https://news.micro.blog/",
 "name": "news.micro.blog"
 }
]
}

The uid field is the URL for a specific blog on the user's account. Pass that URL value when posting:

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/x-www-form-urlencoded

h=entry&content=Hello%20world.&mp-destination=https://manton.micro.blog/

Micropub can also be used to delete posts, edit posts, and send other types of content such as replies and bookmarks. Because favorites on Micro.blog are more like bookmarks than public "likes", Micro.blog converts bookmarks via Micropub to favorites on Micro.blog.

To create a bookmark, pass the bookmark-of parameter with the URL for the resource you want to bookmark.

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/x-www-form-urlencoded

h=entry&content=Enjoyed%20reading%20this.&bookmark-of=https://example.com/interesting-article/

Getting a list of posts is similar to getting the configuration information, but instead of passing q=config, use q=source:

GET /micropub?q=source

Micro.blog returns the posts in reverse-chronological order, with the familiar Microformats-style formatting as creating a new post using JSON:

{
 "items": [
 {
 "type": "h-entry",
 "properties": {
 "uid": [12345],
 "name":["Title here"],
 "content": ["Hello world."],
 "published": ["2020-07-14T18:54:18+00:00"],
 "post-status":["published"],
 "url": ["https://www.manton.org/2020/..."]
 }
 }
]
}

You can also limit the number of posts, or page through the results using the offset parameter. For example, to get the most recent 100 posts:

GET /micropub?q=source&limit=100

And then to get the next 100 posts:

GET /micropub?q=source&limit=100&offset=100

To edit a post, send action=update using the JSON version of Micropub. The request will look just like creating a new post, with the addition of a url field for which post to edit. Instead of a properties field, use a field called replace to list which post properties to update:

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/json

{
 "action": "update",
 "url": "https://www.manton.org/2020/…",
 "replace": {
 "content": ["Hello again. Updated text here."]
 }
}

To delete a post, send action=delete with the url of the post to delete using the simple form-encoded format:

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/x-www-form-urlencoded

action=delete&url=https://…

There are many IndieWeb-friendly apps for posting to your blog, and they all use Micropub. These apps are often good secondary apps for specific purposes. You can use the official Micro.blog app for your normal microblog posts, and a specialized tool for uploading photos, creating bookmarks, sharing a book you're reading, and more.

Drafts and categories

Micro.blog supports creating drafts on the server, for posts that aren’t ready to be published. To create a draft, add the post-status=draft parameter to your requests:

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/x-www-form-urlencoded

h=entry&content=Hello%20world&post-status=draft

To later publish the post, update it using action=update and set post-status=published.

You can also set categories for your posts. To add a “Photos” category to a new post, add a parameter like category=Photo. You can set multiple categories by using category[]:

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/x-www-form-urlencoded

h=entry&content=Hello%20world&category[]=Photos&category[]=Testing

To get a list of categories already set for your blog, send a q=category query for the categories:

GET /micropub?q=category

The response will look like:

{
 categories": ["Photos", "Testing", "Travel", "Writing"]
}

Some people use categories more like tags, so it’s possible that the results could contain hundreds of categories. A convention across the Micropub API is to use a filter parameter to return a subset of results, so we can use that here to search categories:

GET /micropub?q=category&filter=pho

{
 categories": ["Photos"]
}

Getting standalone pages and uploads

IndieWeb blogs often have several post types, loosely following the Microformats standard:

		note: a short microblog post

		article: a full-length blog post with a title

		photo: a post that includes one or more photos

		rsvp: a post that is RSVP-ing to an event

		reply: a post that is a reply to another post

		...and others

This type can be inferred from the content on the page using the Post Type Discovery specification. For example, if the post includes an img tag with a Microformats class u-photo, it’s a photo post.

There’s one type of content that isn’t well-covered in this list: standalone pages on your blog. These aren’t date-based like a blog post, but instead are usually pages that exist outside the reverse-chronological home page, like “About”, “Photos”, or “Archive”. They can be included in your blog’s navigation or sidebar.

Micro.blog uses a special “channel” for these standalone pages. When querying the Micropub config with q=config, the available channels will be returned:

{
 "channels": [
 {
 "uid": "default",
 "name": "Posts"
 },
 {
 "uid": "pages",
 "name": "Pages"
 }
]
}

We can pass the uid for “pages” in a new mp-channel parameter to Micropub when creating a new post:

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/x-www-form-urlencoded

h=entry&content=Hello&mp-channel=pages

When using the JSON version of Micropub, mp-channel is included along with other properties. It’s not a property itself; the mp- prefix is used for commands to Micropub:

POST /micropub
Authorization: Bearer 123456789
Content-Type: application/json

{
 "type": "h-entry",
 "mp-channel": "pages",
 "properties" {
 "content": ["Hello"]
 }
}

To query Micropub for just these standalone pages, use the mp-channel parameter:

GET /micropub?q=source&mp-channel=pages

The response will look similar to getting a list of regular blog posts:

{
 "items": [
 {
 "type": "h-entry",
 "properties": {
 "uid": [12345],
 "name": ["Title here"],
 "content": ["Hello world."],
 "published": ["2020-05-19T15:39:00+00:00"],
 "url":["https://www.manton.org/..."]
 }
 }
]
 }

There’s also an extension to Micropub for getting a list of uploaded files such as JPEGs or MP3s. It's similar to getting a list of posts, but sent to the media endpoint:

GET /micropub/media?q=source

{
 "items": [
 {
 "url": "https://www.manton.org/uploads/2020/058fa92305.png",
 "published": "2020-05-27T14:14:09+00:00"
 },
 {
 "url": "https://www.manton.org/uploads/2020/7a57980ca2.jpg",
 "published": "2020-05-20T02:22:09+00:00"
 }
]
}

The q=source query on the media endpoint also supports the same limit and offset parameters as querying for a list of regular blog posts.

Micropub continues to evolve through extensions, but already has everything you need for maintaining a blog. While not all Micropub servers support everything that Micro.blog does, all servers will support basic posting, making Micropub an ideal place to start when writing a new client or script, and a good place to build from with future extensions.

Webmention

“The internet does not need a conversation layer. It is the conversation layer.” — Derek Powazek

Webmention is a W3C recommendation that enables cross-site replies. You can write a blog post on your own site, at your own domain name, and I can reply to that post on my own site.

I don't need to write a separate comment on your site. Instead, my site notifies your site about my reply via Webmention. Your site can then choose to automatically include my reply on the same page as your post, as if my reply was a traditional blog comment.

By writing replies on our own web sites, we can control the URLs and better own our content. Conversations can be distributed across the web instead of needing to be contained together at a silo.

Webmention is useful even if you don't want your replies to be displayed next to your regular blog posts. Micro.blog currently stores replies separately, but it still uses Webmention when replying to external blogs so that the reply can be included along with the original post.

Chris Aldrich wrote in an article for A List Apart about how powerful a concept Webmention is:

Webmentions help to break down some of the artificial walls being built within the internet and so help create a more open and decentralized web.

Even without Webmention, the web of course is linked with <a> tags, one blog post linking to another. While you could look at log files or JavaScript-based analytics and see who is linking to your blog, what's missing with a regular link is any indication of why the link exists. Is the blog post a reply to another post, or referencing it for other reasons?

TrackBack was an early specification that attempted to make this link more explicit. TrackBack was created in 2002 by Six Apart for Movable Type, and then supported in several other blogging platforms. It supported notifying — or "pinging" — a blog that you were linking to:

The ping provides a firm, explicit link between his entry and yours, as opposed to an implicit link (like a referrer log) that depends upon outside action (someone clicking on the link).

To use TrackBack, web sites needed to include a snippet of RDF in their pages for discovery. The ping itself was sent as form-encoded parameters. At a minimum, the URL of the reply would be included, with optional parameters for title or blog post excerpt.

Pingback was introduced by Stuart Langridge as an "automatic TrackBack" that would look at your post for links and ping those blog posts using XML-RPC:

Just go ahead and blog as you normally do, and it'll all happen automatically. It doesn't have to happen with XML-RPC, it could just be a page request. My thinking there was that RPC makes it easy to generalise, and most blogging systems incorporate XML-RPC libraries now anyway, to support remote blogging tools.

Pings were still sent via XML-RPC, but Pingback improved discovery by using a <link> tag instead of embedding more verbose RDF in the web page.

Webmention evolved from TrackBack and Pingback, improving upon those early formats in a few key ways:

		Keeping the simpler discover method from Pingback.

		Simple HTTP POSTs instead of XML-RPC.

		Didn't include the title or excerpt of the post, which could be used to add spam comments to a blog post, and which didn't look very good anyway.

In a reply on his blog years later, Aaron Parecki outlined why Pingback had been a poor user experience for blog comments:

Pingback never went far enough with the user experience of displaying them. At best, you'd see a snippet of the text near the link, which it turns out wasn't really that useful or contextual. Once social media started taking off, the interactions there became far richer than seeing the pingback excerpt, so people abandoned them.

Instead of using those short excerpts of a comment, Webmention builds on Microformats to let the full reply text appear on the blog post, including any formatting used in the reply. The blog receiving the reply makes a request back to the blog post that is sending the reply, downloading the HTML with Microformats for the post.

Having the HTML of the reply means we can check that it actually links to the blog post that is being replied to. This will help avoid spam comments. And by using Microformats, we can find exactly which text should appear as a comment on the receiving blog.

How Webmention works

The first step to sending a Webmention is discovering the endpoint URL to send the web request to. On the blog's web page for which you're sending a Webmention, check the HTML source for a link tag with rel="webmention". This is similar to looking up a Micropub API endpoint.

<link rel="webmention" href="https://micro.blog/webmention">

All Micro.blog-hosted blogs use the same Webmention endpoint URL. External blogs such as WordPress will use a URL provided by the Webmention plugin for WordPress.

Webmentions are sent to the endpoint URL as an HTTP POST with essentially just two form-encoded parameters:

		source: the URL of the new reply

		target: the URL of the original post being replied to

Here’s an example:

POST /webmention
Content-Type: application/x-www-form-urlencoded

source=https://micro.blog/manton/7902528&target=https://anotherdomain.com/original-post

Like Micropub, Webmention is simple enough that it can even be sent with the curl command line tool:

curl -d "source=https://micro.blog/manton/7902528" -d "target=https://anotherdomain.com/original-post" "https://yourdomain.com/webmention"

To illustrate this flow, imagine Aaron Parecki is posting to his blog. I see the post in Micro.blog and reply to it. Micro.blog should first discover Aaron's Webmention endpoint by downloading the HTML for the target blog post:

[image:]

Aaron's blog will return the HTML, including the link tag:

[image:]

Now that Micro.blog has the Webmention endpoint, it can ping it with the source and target URL parameters:

[image:]

When receiving the Webmention, Aaron's blog will download the reply from Micro.blog and look for the Microformats post content. Aaron's blog can then add my reply on his blog post.

Usually software like Micro.blog will handle this automatically. If you need to manually send a Webmention, the web-based tool Telegraph includes a convenient Send a Webmention feature. It will discover the Webmention endpoint URL for you based on the post you are sending a reply to.

In Micro.blog, you can @-mention another web site even if that user does not have a Micro.blog account. Starting a post with @yourdomain.com will send a Webmention to the target web site's home page. Likewise, external web sites can send Webmentions to blog posts that appear on Micro.blog.

Sending replies manually

When you use Micro.blog’s built-in reply feature, Micro.blog handles sending the Webmention for you. But what if you want to reply to someone’s blog post that isn’t included in the Micro.blog timeline already, so there is no reply link?

To construct a reply, use Microformats u-in-reply-to with an HTML link:

Great post on this blog. Really enjoyed it.

When Micro.blog sees your post, it will automatically notice the u-in-reply-to class and send a Webmention for you, handling all the discovery for the external blog.

If you’re not using Micro.blog, the HTML will be the same, but you’ll want to have another process to discover the Webmention endpoint and send the ping.

WordPress comments

By installing the Webmention plugin for WordPress, Webmention pings from other sites will appear as WordPress comments. This includes replies from Micro.blog.

Here’s how the flow of replies to WordPress work:

		You publish a new blog post to your WordPress site.

		The post shows up in the Micro.blog timeline.

		Another user sees the post in Micro.blog and replies to it.

		Micro.blog sees that the reply is to an original post on the web and checks that post for whether your site supports Webmention.

		Micro.blog sends a Webmention to your site, passing the source URL for the conversation on Micro.blog that contains the new reply.

		WordPress accepts the Webmention and adds a new comment on your post.

That reply is marked up with Microformats automatically by Micro.blog. This markup includes the author’s name, profile photo, and the actual reply text. By adding this extra data to the reply web page, WordPress can parse the page and extract the details it needs to show the comment on your site.

Here’s an example of what the markup looks like on a Micro.blog reply.

<div class="h-entry">
 In reply to

 <div class="p-author h-card">

 </div>

 <div class="e-content p-name">
 <p>@username This is the reply text.</p>
 </div>

 <time class="dt-published" datetime="2020-01-21T21:49:09+00:00">3:49 pm</time>
</div>

I've simplified the HTML to remove some of the Micro.blog-specific layout, focusing on just the important Microformats:

		h-entry: wraps all of the content for this reply.

		u-in-reply-to: the URL that this reply is replying to.

		p-author, h-card, and u-photo: the profile photo for who is sending the reply.

		e-content: the actual reply text.

		dt-published: the time the reply was sent.

Because this system is based on Webmention, it doesn't just work with Micro.blog. Any blog can post a reply to a WordPress blog and have that post show up as a comment in WordPress.

To make sure these comments include the data from Microformats, install the Semantic Linkbacks plugin for WordPress.

Combined with Micro.blog's ability to follow IndieWeb-friendly blogs by using their domain name for the username, like @yourdomain.com, it's possible for WordPress bloggers to participate in Micro.blog and get replies from Micro.blog users without ever creating an account on Micro.blog itself.

Webmention on static sites

Static-site generators like Jekyll and Hugo can't accept dynamic requests like Webmention pings. There is no database on a static server to keep track of incoming data. To support Webmention, static sites should use an external service like Webmention.io to handle receiving the replies.

Add a link tag to point to webmention.io. When you register on Webmention.io, you'll have a username which you can use in the endpoint URL:

<link rel="webmention" href="https://webmention.io/username/webmention">

Now when someone replies to your blog posts, the Webmention ping will be sent to Webmention.io. Webmention.io will record it in its database, making the data available via an API or from JavaScript.

Another project, Webmention.js, builds on Webmention.io to make it easier to show replies for a blog post without writing JavaScript yourself.

It's even possible to replace Micro.blog's own Webmention endpoint with Webmention.io, if you want to keep track of replies and display them in a different way. Micro.blog user Steve Layton has written a blog post about how to use a custom Micro.blog theme to do this.

Micro.blog has built-in support for Webmention, including retrieving replies for a specific post. You can use Conversation.js to automatically include replies on your blog post page.

Conversation.js is a snippet of JavaScript you can paste into any blog theme. Wherever you use this JavaScript, Micro.blog will insert the replies for that post. Here we’re using Hugo’s .Permalink to pass the current blog post URL:

<script type="text/javascript" src="https://micro.blog/conversation.js?url={{ .Permalink }}></script>

Or if you’re building your own solution, you can retrieve replies via Micro.blog’s API like this:

GET /webmention?target=https://my-blog-post&format=jsonfeed
Host: micro.blog

If you use format=jf2, the response will be in the same format returned by Webmention.io. This kind of consistency makes it easier to switch between Webmention providers. It’s another value of the modularity of IndieWeb building blocks.

RSVPs

Webmention can be used for more than just traditional replies. By adding a little extra HTML to your post, you can send a Webmention for special cases, such as RSVP-ing to an event.

Like a reply to a blog post, an RSVP should link to the event with the Microformats u-in-reply-to. An RSVP is essentially a reply to an event. We also need to include a value with p-rsvp for whether we will be attending.

Yes, I’ll be attending IndieWebCamp West later this month.

RSVPs can have one of the following values:

		yes

		no

		maybe

		interested

We can also include this value outside of the text in our blog post by using the data HTML tag. A web browser won't show this, but the receiving endpoint that is processing the Webmention can still record our answer:

<data class="p-rsvp" value="yes" /> I'll be attending IndieWebCamp West later this month.

For short microblog posts, the web site receiving the Webmention can use the text of your post to display with your RSVP. For longer blog posts, you may want to provide a shorter RSVP message that is not included in the full post, so that the event web site can show only the short RSVP, and not your full blog post, which might need to be truncated. This also uses the data HTML element:

<data class="p-rsvp" value="yes">I’ll be attending this event.</data>

Because not all blog post templates contain author information with the post, it sometimes might be helpful to add your name and profile photo directly to the post. Then the site receiving the RSVP can display it.

To add a hidden name and profile photo to the post, use a style with display: none so that web browsers don't show the profile photo. You can also use a data element, similar to what we used above for the p-rsvp itself, to include your name without displaying it on your blog post:

<data class="p-name" value="Manton Reece" />

This is a little bit of a hack, though, and not all event sites that receive the RSVP will respect the display: none style. Even better is to make sure that your blog theme has an h-card with the profile photo on every page.

After you've created your RSVP blog post, the final step is to notify the event’s web page by sending it a Webmention:

POST /webmention
Content-Type: application/x-www-form-urlencoded

source=https://yourdomain.com/rsvp/...&target=https://events.indieweb.org/…

Webmention is a simple protocol that on its own may appear to do very little. Combined with Microformats and platforms that can store and display reply data, though, it provides the infrastructure for cross-site replies and a flexible set of other reactions like RSVPs and likes, giving our independent blogs the functionality of a social network built for the whole web.

To make this easier for Micro.blog, I created a plug-in called IndieRSVP that adds a Hugo rsvp shortcode that you can use in your blog posts. It takes the event URL and adds the u-in-reply-to and p-rsvp for you:

I'm going to this! {{< rsvp href="https://events.indieweb.org/2022/03/micro-camp-2022-IW2Qp3ygHike" >}}

Micro.blog will notice the link and automatically send the Webmention for you. We noticed more RSVPs being sent to Micro Camp 2022 as soon as this was a little easier with the plug-in.

Looking back on the 2002 book Small Pieces Loosely Joined, David Weinberger reminds us that the web was not intended to be an application platform. It’s about documents and parts of documents.

A centralized platform like Facebook or LinkedIn does not need to concern itself as much with replies across web sites. It’s all about keeping the content and discussion on a single web site.

For a more distributed web, with replies spread across different sites, a protocol like Webmention is needed to connect conversations together. And when more indie blogs support Webmention, it also enables bridging tools between social networks and blogs.

Bridgy

“So come and walk awhile with me and share the twisting trails and wondrous worlds I've known. But this bridge will only take you halfway there. The last few steps you have to take alone.” — Shel Silverstein

POSSE is a popular part of the IndieWeb community. Cross-posting lets us stay connecting with friends on other silos like Twitter.

Bridgy was developed by Ryan Barrett to help "bridge" the gap between our own blogs and silos. If you're cross-posting your blog posts to Twitter, Bridgy can check for replies or likes to those tweets and then send them back to your blog via Webmention.

By checking for interactions from silos, friends can reply using existing platforms they are used to, but you still see those replies on your own blog.

When you register on Bridgy, you give it your blog and your account at a silo like Twitter. It checks your Twitter account for replies to your blog posts. If your cross-posted blog posts have a link back to your post in the tweet, Bridgy can match that to your blog post and send a Webmention using the content in the reply on Twitter.

How is this possible, when tweets only exist on twitter.com and photos might be on instagram.com, not individual domain names with the appropriate Microformats markup? Bridgy creates shim web pages with the contents of the tweet reply marked up appropriately. It's the URL for those special web pages outside of Twitter or Instagram that Bridgy sends to the Webmention endpoint.

Let's use an example of this flow from Bridgy developer Ryan Barrett's posts. His domain name is snarfed.org and his Instagram username is @snarfed.

First, he posts a photo of Forky from Toy Story to his blog. He copies the post over to Twitter and Instagram, too.

[image:]

Someone adds a comment to the Instagram post:

[image:]

Bridgy is polling Twitter and Instagram, looking for replies and likes on that post. When it finds the comment on Instagram, Bridgy creates a small HTML page with the contents using Microformats.

[image:]

It then sends a Webmention back to Ryan's blog, notifying the blog of this new comment, with a URL for the version of the post in Bridgy with Microformats. Ryan's blog can then update with the reply directly on the blog post:

[image:]

The IndieWeb has a term for this process of pulling replies and likes from silos: backfeed. It also allows you to curate the conversations because there's a copy on your web site:

You can moderate those as you see fit on your own site, thus improving the comments overall on your posts as compared to what silos allow for.

On a silo, you have limited control over what content appears alongside your own posts. On your own web site, harassing or misinformed replies can be removed.

Micro.blog has limited support for replies from Twitter, Mastodon, Instagram, and Bluesky via Bridgy. If you were using Bridgy to connect your blog to Twitter, Micro.blog had initially been ignoring any tweet replies to your blog post. Unlike for Micro.blog users, Mastodon users, and blogs, there was no way to represent a Twitter user in Micro.blog, and so it didn’t make sense to thread tweets into a Micro.blog conversation.

Everything in the Micro.blog timeline needs to come from someone’s blog, where the username is either a Micro.blog username or a domain name. Twitter and Instagram users do not have a unique domain name, because they are all shared under “twitter.com” or “instagram.com”.

Including tweets in Micro.blog would have other ripple effects that I wanted to avoid. For example, what happens if you reply to a tweet? I’m not interested in turning Micro.blog into a Twitter client. Quite the opposite. I’m actively trying to distance myself from Twitter and avoid dependencies on any big social networks.

Bridgy is so popular in the IndieWeb community, though, that I revisited this limitation. Micro.blog will now recognize Twitter and Mastodon usernames sent via Bridgy and store those replies in Micro.blog. Twitter users will still not appear in the Micro.blog timeline, but they are available for querying from the API, or including on your own blog hosted by Micro.blog.

As Twitter has continued to shut down their API under Elon Musk’s leadership, most services including Bridgy have had to disable support for Twitter, making this largely a moot point in 2024.

Micro.blog has a built-in JavaScript include called Conversation.js for showing replies on a blog post. It pulls these replies from a conversation on Micro.blog, plus any Twitter replies from Bridgy. This brings Micro.blog’s Webmention support more in line with what Webmention.io can provide.

Because Micro.blog-hosted blogs are just blogs, with themes that allow you to customize any of the HTML, it’s possible to swap out Conversation.js with another solution. If you edit your blog to use a separate service to collect incoming Webmentions, like Webmention.io, then replies to your blog post will go to that service. You can then display any type of Webmention on your Micro.blog-hosted blogs, even those from Bridgy.

There’s an additional gotcha you should know about using Bridgy and Micro.blog together. Bridgy needs a link to your blog post for it to be able to match up tweet replies to that blog post. When cross-posting to Mastodon, Bluesky, and other services from Micro.blog, Micro.blog only includes a link back to your blog if your blog post has a title, or if it needs to be truncated to fit in the tweet.

If you want all cross-posted tweets to link back to the microblog post, even if they were short, you have a couple options:

		Use Bridgy itself for the cross-posting instead of Micro.blog, and disable cross-posting in Micro.blog. Many cross-posting services will always include a link back to your blog.

		Use a Micro.blog theme that has special support for adding the u-syndication microformat with blog posts. When Bridgy crawls your blog, it can use this syndication link to match up the post on an external service.

Bridgy can find replies on Bluesky for your blog posts. Because Bluesky uses domain names for usernames, it’s a perfect fit for how Micro.blog thinks about the web. When someone on Bluesky replies to your post, Micro.blog will receive a webmention from Bridgy. Micro.blog then adds the reply directly to the timeline, creating a new user if necessary to represent the Bluesky account.

Micro.blog has also been expanded to support following some Bluesky users. It uses a combination of RSS feeds from Bluesky with Bluesky’s AT Protocol API to retrieve profile information.

If your blog is using Micro.blog, there are Hugo parameters you can use to insert the cross-posted URL in theme templates. The following parameters are supported by Micro.blog:

		.Params.twitter.id — tweet ID

		.Params.twitter.username — your Twitter username

		.Params.medium.id

		.Params.medium.username

		.Params.linkedin.id

		.Params.linkedin.name

		.Params.mastodon.id

		.Params.mastodon.username — just the username part of your full handle

		.Params.mastodon.hostname — instance name like "mastodon.social"

		.Params.tumblr.id

		.Params.tumblr.username

		.Params.tumblr.hostname — you.tumblr.com

		.Params.flickr.id

		.Params.flickr.username

		.Params.bluesky.id

		.Params.bluesky.url — the "at://" URL for the post

		.Params.bluesky.handle

		.Params.bluesky.hostname

		.Params.bluesky.did

		.Params.nostr.id

		.Params.nostr.pubkey

When posting to your blog, Micro.blog follows this basic flow:

		Updates your blog with the new post.

		Downloads your JSON Feed which now contains the new post.

		Sends a copy of the post as a cross-post to Bluesky and other services.

		Updates the blog post metadata to store the URL or post ID from the external service. For Bluesky, this is in the form of an at:// scheme.

		Publishes your blog again now that it has this new metadata, so the Hugo parameters are available.

Here’s an example of including a link to Bluesky in the blog post. Note that in this case I’m hiding the link using display: none in CSS. This still allows crawlers such as Bridgy to find the information. You can choose to include links or icons to other services.

{{ if .Params.bluesky }}
 Also on Bluesky
{{ end }}

Because of how Hugo escapes HTML attributes, we have to do this little dance with printf so the value is escaped correctly.

Looking at the Bridgy shim web pages can illustrate how Microformats can enhance the content on a web page. Twitter’s own HTML is complicated, with a mix of CSS and JavaScript. But Bridgy’s version is simple.

Black before Twitter started closing their API, I posted a test tweet reply to one of my own blog posts. When Bridgy noticed the reply tweet, it created a new shim web page at a URL that included the tweet ID:

https://brid.gy/comment/twitter/mantonsblog/1395021416588849153/1395033801533927428

The important part of the HTML at that web page looks like this:

<article class="h-entry">

	tag:twitter.com,2013:1395033801533927428
	<time class="dt-published" datetime="2021-05-19T15:09:11+00:00">2021-05-19T15:09:11+00:00</time>

	
		Manton Test
		
		mantontest
		
	

	https://twitter.com/mantontest/status/1395033801533927428
	
	<div class="e-content p-name">
		This is a test reply to see Brid.gy in action.
	</div>

	
	
	

</article>

It includes everything needed to show the tweet outside of Twitter — such as p-author with a profile photo, and e-content for the tweet text — along with metadata to follow the conversation thread back to the original blog post, like u-in-reply-to.

Simple formats are easier to understand and combine with other services to build something new.

Blog archive format

“Why bake your pages instead of frying? Well, as you might guess, it’s healthier, but at the expense of not tasting quite as good. Baked pages are easy to serve. You can almost always switch servers and software and they’ll still work.” — Aaron Swartz

We have a blog at our own domain name. We include Microformats in our web pages. We use software that supports protocols like Micropub and Webmention to make posting easier, and to connect conversations across blogs.

All of these help give our blog resilience, but it’s not enough. We also need a plan for backups and portability, for when we inevitably do need to migrate to a new platform.

In the 449-page report by the U.S. house judiciary subcommittee on antitrust, they recognized the importance of data portability to balance the dominance of tech companies like Facebook. The section of the report on potential remedies covers the high switching costs for users, suppressing competition unless portability is required:

Data portability is also a remedy for high costs associated with leaving a dominant platform. These costs present another barrier to entry for competitors and a barrier to exit for consumers. Dominant platforms can maintain market power in part because consumers experience significant frictions when moving to a new product. Users contribute data to a platform, for example, but can find it hard to migrate that data to a rival platform. The difficulty of switching tends to keep users on incumbent platforms.

Platforms like Twitter, Facebook, and Medium offer data export, but each in a different format. And even more open blogging platforms do not have a standard interchange format.

As I’ve been improving the import and export functionality in Micro.blog, I’ve done a lot of work with WordPress’s WXR format, which is based on RSS. Because it’s just an XML file, it contains only the content on a blog that can be represented as text. Any uploaded photos are not included in WXR.

Instead, what WordPress and Micro.blog do when processing a WXR import is to attempt to download any photos referenced in the file during import. This requires that the files are still online at their original URLs. It’s no help if you need to restore or migrate a blog and all you have is a WXR file.

WXR is also very WordPress-specific, full of redundant WordPress elements that might be difficult for other blogging platforms to replicate exactly.

An alternative solution is to not use a file format at all, but instead use protocols to directly transfer data between platforms. The Data Transfer Project is backed by Facebook, Google, Apple, and Twitter. In late 2019, Facebook started testing support for transferring photos based on the Data Transfer Project:

At Facebook, we believe that if you share data with one service, you should be able to move it to another. That’s the principle of data portability, which gives people control and choice while also encouraging innovation. Today, we’re releasing a tool that will enable Facebook users to transfer their Facebook photos and videos directly to other services, starting with Google Photos.

The Data Transfer Project is quite complex, though. The example code is dozens of Java source files. It may be fine for large platforms, but will be difficult to implement for smaller projects and nearly impossible for most IndieWeb sites.

And for large platforms like Facebook, supporting the Data Transfer Project might give the appearance of openness without having to allow transfer of the more valuable parts of their network. Ben Thompson wrote on Stratechery about how these platforms still have competitive advantages and are unlikely to make it easier to move away:

Back in the days of Facebook’s Open Graph initiative — which is at the root of controversy surrounding Cambridge Analytica — Facebook was giving away all of the data developers might want, the better to get developers on the Facebook platform. The company drew the line, though, when it came to other social networks.

Data portability is an important part of Micro.blog and the IndieWeb. If you have an IndieWeb-friendly blog with your own domain name, the assumption is that you can move to another hosting provider at any time.

For Micro.blog, we also experimented with a feature to push an entire site’s Markdown, HTML, and photos to GitHub. This was a complete mirror and good for migrating to another server. It introduced so many extra files, though, it was not reasonable to expect that other blog platforms could support the same level of detail.

I’d be happy to ignore the WordPress-centric nature of WXR and use it as a common blog archive format if WXR provided a mechanism to store photo uploads. Helping people migrate from WordPress to Micro.blog-hosted blogs has only emphasized to me that a better format is needed.

In chatting with the IndieWeb community, the idea was proposed that an HTML file using h-feed would provide portability and also an added bonus: it could be opened in any web browser to view your archived site. Photos could be stored as files with relative references in the HTML file. It would include a JSON Feed file, too, so that importers could choose between using a Microformats parser or JSON parser.

The files inside the archive look something like this:

		index.html

		feed.json

		uploads

		
				2017

				
						test.jpg

				

		

The basics from h-feed would follow this structure in the index.html file:

		h-feed

		
				h-entry

				
						p-name

						e-content

						dt-published

						u-url

				

				h-entry

				
						…

				

		

Only index.html and feed.json are required. Any other paths in the archive would be determined by the contents of the HTML. (I’m using “uploads” in this example, but it could just as easily be “archive”, “audio”, or any other set of folders.)

For large sites, the HTML can be split into multiple files with appropriate <link> tags in the header to page through the additional files. While it can contain CSS and your full blog’s design, for Micro.blog the HTML is lightweight: just enough to capture the posts, not a way to transfer templates and themes between blogs.

The whole folder is zipped and renamed with a .bar extension. That makes it easy to move around and upload all at once.

The nice thing about this format is that you can unzip these archives to preview your entire site in any web browser, and it contains all the related photos and other files.

I’ve been working on improving support for Blog Archive in Micro.blog. Version 2.3 of the Mac app can now import .bar files with a nice preview window and progress. It can import into Micro.blog or external Micropub and WordPress blogs.

[image:]

When the Mac app uploads photos for your blog from the archive, it rewrites img tags in your HTML to use the new URLs, so it’s a good way to migrate a blog with no or minimal cleanup needed afterwards.

Tools that want to process these files can choose between parsing the Microformats or JSON Feed version of the blog. IndieWeb-friendly tools may find it easier to work with Microformats, and new apps can use any JSON parser.

When generating a .bar file, I recommend having plain HTML in index.html with common Microformats like h-feed, h-entry, u-url, dt-published, and e-content. In the JSON Feed, you can use content_text for the source Markdown or HTML if you have it, and then HTML in content_html. Micro.blog will prefer content_text if it’s there.

For an example to test with, check out this file: example.bar. This contains a few posts and screenshots from our Epilogue blog.

I really hope this format catches on. The files can be big, but they give you a single file that you can backup anywhere.

This is one of the strengths of the IndieWeb's approach to suggesting multiple building blocks instead of a single monolithic standard. Smaller, focused standards can be reused in different ways, such as using Microformats as the basis for a new archive format.

Interview with Tantek Çelik and Aaron Parecki

IndieWeb Summit is held once a year in Portland, although like many events it has been on hiatus during the COVID pandemic. For 2018, I attended and gave a keynote along with Micro.blog’s community manager Jean MacDonald about what we had learned trying to make Micro.blog as approachable as possible for mainstream audiences.

After the conference, I sat down with Tantek Çelik and Aaron Parecki to talk about the early days of IndieWebCamp and where things might be headed. This is an edited portion of the conversation.

Manton: Take me back to 2011: the founding of IndieWebCamp. What did that feel like? How you all got together. How the first IndieWebCamp got started.

Aaron: So 2010 was the Federated Social Web Summit — in Portland — and that was the invite-only but "you could kind of ask for an invite"-style event.

Tantek: Which we now know greatly biases towards people that feel privileged enough to ask for an invite, so it's sort of a bad way to do it. I didn't even put that together until the last year. Yeah, don't do that kind of private conference.

Aaron: So I ended up there, Tantek, as well as a bunch of others. It was a fun group, but the thing that we took out of it was that the focus seemed to be on people building things for other people, building specifically platforms. They were coming with platforms and trying to make them work together. Which is a fine goal, but that wasn't my personal interest in it necessarily. So it was more like, "oh, I have this Buddycloud thing, let's make it work with Friendica". Or Diaspora was there.

Tantek: The Diaspora 4 were there, which was cool. That's where I really got to spend time with them.

Aaron: And there was also a lot of solving problems in theory without actually testing them out or building something first. And a couple of pretty in the weeds discussions that I ended up sitting in on and was like, "this is really complicated". I feel like there is a better solution. That was where SWAT0 the concept was formed as well, right? Interoperability tests between social networks — can someone post a photo of somebody else using a different system be notified that they were tagged in a photo and then a third person comment on the photo and have that comment notification appear on the person who favorited it. Everybody has to be using different software for that test to pass. SWAT0: social web acid test.

Tantek: As far as we could tell no one actually got it to work across different sites.

Aaron: The goal with SWAT0 was to have three different systems interoperating. Several people claimed that they supported everything needed for SWAT0 themselves. But by definition that doesn't solve SWAT0 because you need three different implementations. So there were several people who were like, "I can be every person in this — every role in this test". But then there's no one to test it with, because only one person would do that at a time. And we are still kind of in that situation sadly. It's still a very hard problem. We did in 2015 have a demo of it working between three different recommendations, although each implementation only was able to be one or two of the roles of the three.

Manton: And that was using Webmention?

Aaron: Yeah, exactly.

Manton: So back in 2010 what was the technology to.. It was way after Pingbacks and Trackbacks.

Aaron: Yeah, the thought was the OStatus stack. Atom. Salmon for the responses.

Tantek: PubSubHubbub, I think.

Aaron: I believe so, yeah. For finding the photo in the first place.

Tantek: But Salmon for the notification.

Aaron: Salmon for the notification of the comment. But in order for someone to see it in the first place they would be following an Atom feed, probably, with PubSubHubbub.

Manton: And so now Salmon is making a comeback with Mastodon, right?

Aaron: No, it's already done.

Manton: It did briefly make a comeback and then got replaced.

Aaron: Mastodon ripped out their whole code and replaced it with ActivityPub. So after that event we were like, "okay, that was cool, but we want to focus on people being more empowered individually to participate in this federated network."

Tantek: Everyone got to give lightning talks. That was part of it.

Aaron: But the sense I got was that the assumption was that in order to participate in a federated social network, you have to be on a platform that supports the protocols. The only way to do that was that if someone built the platform that interoperates with other platforms, and then you as an individual join one of those platforms. There was no "just my web site".

Tantek: Or one-person platform.

Aaron: Or single-person platforms was like: why would you do that? That was the feeling there. That was why we did IndieWebCamp the year after, because we wanted to approach it from the grassroots of: someone should be able to take their web site and be able to use their web site to participate in the same distributed social network — federated social network.

Manton: As the conference was wrapping up, did you have a feeling that y'all would probably do IndieWebCamp, or was it making friends and catching up with people.

Tantek: We were mostly catching up with people, meeting new people. I was just looking at my notes, because I actually put my entire talk from it on their wiki because it's like that's how it'll survive. Turns out wikis are more persistent than PowerPoint.

Manton: So in that time... 2010 is actually a really interesting time because Twitter had been around for a few years and really gained a lot of steam, and actually a lot of early bloggers — who were blogging all the time in the early days — around 2010-ish they dropped off. They started just doing Twitter.

Tantek: Even just 2009...

Manton: Twitter satisfied that "I'm going to post something". And you can see that. I went back recently and looked at a bunch of people that were doing blogging software. Founders of Blogger, Movable Type, and Six Apart people. And very few of them kept their blog through that period. So could you sense that at the time?

Tantek: Totally. Just even personally, the last blog post I wrote on my old blog was in August of 2008. I did not have anything on my own site in 2009. 2009 was a really weird transitional period, because I both saw that happening and I saw it happening to myself. And then the other thing that happened simultaneously — which I think helped — is that Twitter was really unreliable in 2009. We all switched to Twitter and then it got really unreliable. It was so frustrating.

Tantek: First of all I'm embarrassed that I'm not posting to my own site anymore, and then I'm frustrated because this damn tool is never up. And that's really where I came up with the idea of, well, I should post to my own site and if I could set up a system where I can always just post to my own site, whether or not Twitter was down, then I can just have my site post to Twitter when it comes back up. And I can abstract away that frustration of their site being down. Abstract away their unreliability, while still getting that participation with friends thing. So 2009 is when I started working on what's now my web site. Launched in 2010. January 1st, I'm like: from now on everything is going on my site first.

Tantek: And then the Federated Social Web Summit happened and I was like, "woah, okay". But the platform perspective that Aaron was pointing out. Wait a minute, you don't need to use a whole platform. Everyone can do this themselves. So that was my lightning talk, basically, and it even ended with... I'll show you the summary: use your own site as your identity; publish on your own site; and then syndicate with PubSubHubbub. That's still true.

Manton: And the first one, importantly... The very first principle of the IndieWeb principles is that. Use your own site, own your own content. Domain names are a big part of that. Really the biggest thing. Unfortunately domain names have not changed since 2010. They haven't changed since 2000. It's interesting that something so important, that "step one" is still really confusing to people.

Tantek: Oh, that's where you're going with that. I thought you were going with like, "they're still around".

Manton: I'm going with: why aren't they easier? Because a lot of what the IndieWeb does, if you look at Microformats and Micropub and all these core parts of the IndieWeb, they're built on HTML and HTTP where we have some control over making things easier and having other standards.

Tantek: Yes.

Manton: Is there hope for making DNS also easier for people, or are we just kind of stuck with this for a while?

Tantek: The irony is I don't know what you're comparing it to. Look at the amount of time it takes you and the form you have to fill out to get a new phone number. I would challenge you to do an A/B test. How long it takes to get a new phone number from scratch, not having a phone number, to how long it takes to getting a new domain name. And I would bet that it's actually fewer steps to buy a new domain name. So I definitely sympathize that it could be easier to buy a domain name, but compare it to other forms of identity that people take for granted. It is less work to do. Or maybe the hard part is picking a domain name.

Aaron: Yeah, that's part of it. A phone number just gets assigned to you.

Manton: And everybody kind of knows how phone numbers work, I guess. No one's surprise that there's a 3-digit area code, and a 3-digit number, and a 4-digit... Whereas with domain names there's certain things (and IP addresses) that people are surprised by.

Aaron: Getting the domain is the first step. But then once you have it you have to know that you now need to set up DNS on it and point it at a hosting provider. And that's the part that's different from a phone number. Because once you have a phone number, it almost certainly came with a phone. You don't buy a phone number and then assign it to a phone. You do that all as one step.

Tantek: It turned out that the equivalent of phone number registrars, all cell phones... It would be as if every domain name registrar — and a lot of them do now — sell hosting. So right off the bat, they're like, "here's a domain name, do you want us to flip on a simple web site for you?" A lot of them do that. That has changed.

Aaron: Yeah. That's true, actually. That has gotten better. It used to be that GoDaddy or Name.com or NameCheap only did domain names. And then they all started adding hosting plans to their product.

Tantek: Which makes sense.

Aaron: It absolutely makes sense. And when you use the hosting plan provided by the registrar it is actually very easy, because it is more like you just go there, type in the domain you want, pay, and then now you have the empty shell to put stuff on. Doing something with the empty shell of a hosting plan is another step, but at least they do make the DNS to hosting step combined into one.

Tantek: Other hosting providers have made it easier to one-key turn on WordPress, turn on Known. I don't know there's a domain name registrar that also has easy hosting that also has a simple turn on a web site CMS.

Aaron: DreamHost does a pretty good job of it.

Tantek: That's true. DreamHost probably has the most pieces that they've put together. And they were the first to do LetsEncrypt automation. Domain name, security, hosting. So that's evolved. It's very impressive to watch, even during the whole eight years of IndieWebCamp.

Manton: And comparing it to the phone numbers, if you go get a phone from someone they can always give you a phone number — if you go to Verizon or AT&T. And maybe where we need to be eventually with the web is that any place you can go get a web site can give you a domain name, which is not really true right now. The big companies can, but a smaller webhost can't necessarily.

Aaron: You can, but it's more work as a service provider. There's plenty of domain resellers. I built a system to do that at one point, where we wanted to be able to offer domains as part of the product we were offering. So I found a domain reseller that had an API and hooked it all up. You would come to us and click the button for, "I want this web site with this theme." It worked seamlessly.

Tantek: Even GitHub should it doing that, right?

Aaron: Right, for GitHub Pages. Instead of just offering GitHub Pages and being able to map a domain to it, why shouldn't they offer their own domain registration.

Manton: So you had mentioned with the changes in the last seven years... Going back to that first IndieWebCamp. We're just wrapping up IndieWeb Summit 2018. Does it feel the same in terms of the community and what people are excited about? Obviously standards and everything else have evolved.

Aaron: The biggest shift in that context that I've seen between the original ones, specifically, although even from 2014 to now. Now we actually have a lot more stuff working together than we did in 2011, obviously, and even in 2014. At the beginning it was the same goal, the same ideals, but we couldn't demo me commenting on someone's post. That didn't work until way later. And because of that the sessions were all drastically different, because there wasn't a thing to coalesce around except for the ideals of own your data, have a domain name, do stuff on your web site.

Aaron: So if you go back and look the original sessions from 2011 to 2014, it's a wide variety of things. Now at IndieWebCamps you end up with a lot of people who are coming to it and then become aware that there are things that work and then want to learn how to do those things. Now at the beginning of the second day we have the intro to the building blocks session. What is IndieAuth. Get Webmention working. Even in some of the IndieWebCamps there will be a whole track of unconference sessions about those building blocks for the whole day, where it's people who know they want to learn these things that already exist.

Tantek: The talks were so varied back then. We were just figuring out so many basics that a lot of the talks were very exploratory. We figured out some things like, "okay, I figured out how to syndicate into Buzz and Twitter, how about other places?" Then there was advocacy for plain text formats and there was a BitTorrent session.

Aaron: Yeah, I think that's the biggest shift I've seen is that there's so much more stuff that's actually working now that's functional. And it means that people are coming and wanting to learn that. And of course there's still the experimental stuff. There was a good set of experimental sessions at this event. But there's a lot more of: we have stuff working now that you can figure out and learn how to use.

Manton: There are two things, too. There's all the IndieWeb-friendly formats and protocols are much more mature and established now, so that you could talk about the building blocks as a real thing. But then there's also... It seems like the software is much further along. A bunch of people will come to the IndieWeb and they use WordPress, because WordPress powers 30% of the internet and it's super popular. But there's still a pretty good mix in the demo sessions and what people are hacking on of WordPress stuff and also "no, I rolled my own".

Tantek: Yeah, in fact lots more rolled their own, which is not representative I think of people out there in general.

Manton: What do you think about the fact that WordPress is a very dominant platform. Is that good because there's an agreed thing there everyone can use the same plugins, or are there any drawbacks?

Aaron: WordPress specifically because it's self-hostable, that benefit ends up overriding some of the other drawbacks of that kind of approach. The danger with something being so dominant.. It's the monoculture problem. We don't want to be in a situation where we just have WordPress instances talking to each other. That doesn't actually solve the problem.

Tantek: Or just have Mastodon talking to each other.

Aaron: Just Mastodon or just Diaspora or whatever, right. That's the danger. That's the thing we're trying to avoid.

Tantek: Because that has lots of even worse consequences.

Aaron: Yes, exactly. And even when it's a friendly company like WordPress that's behind it, it doesn't matter — the same problems.

Manton: You start to build like platform-specific... It's different than just building for the web in general where anybody can bring their own site and plug in. With Mastodon specifically, it's based on open standards but it also feels very opaque in a way — how stuff talks to each other. It's a little more difficult to just build a web site and be compatible.

Tantek: It's also levels of barriers to entry. Because that's one thing that myself and I think a bunch of people at the 2010 Social Federated Web Summit we're frustrated with was a lot of the standards being tossed around — every generation has its own standards — were really hard, like Salmon. I tried to read through the spec and understand what it was doing, and I could not wrap my head around enough of it to even start coding.

Aaron: I had the same experience at that event. I even then later, a year ago, tried to revisit the spec because Mastodon was using it. I feel like I should be able to have my web site just be a part of this network. I refuse to make a new Mastodon account and treat it as a POSSE destination because that completely defeats the purpose of what Mastodon itself is even shooting for, which is an actually distributed social experience.

Aaron: So I was like, "okay, it can't be that hard now". Certainly things have gotten better, and I should be able to just take my web site and add the stuff it needs. I still can't figure it out. And then they went and dropped Salmon anyway and switched to ActivityPub, so I'm glad I didn't spend my time on that.

Tantek: It turns out that the difficulty of the standard to implement makes a big difference. Because if it's super difficult then you end up with only a handful — maybe even just one or two people on the planet — that can implement it, and then you get monoculture by default. In effect, not by design. One of the things we realized was that the antidote to that is to make the standards as simple as possible. Literally as dumb and simple, and frankly decomposed. So that's where we came up with the building blocks idea rather than having a stack. And the idea that building blocks is you pick and choose the ones that you need for your use cases. That doesn't mean you're committed to implementing a layer after layer after layer to get to a certain point.

Tantek: That was a big insight. The more accessible the standards are for any developer to build their own solution. That means that the more they're going to get exercised, the more that they'll get good interoperability, the more that they'll be a community around it. Because that's really what it came down to.

Tantek: I think that's kind of where the IndieWeb community started to form — started to really grow and gain critical mass — is the growing number of people that were like, "oh, I can implement that on my web site in an hour or less." And then in a day they could do amazing things.

Aaron: And it's demonstrated by the fact that like you look at the RSVP list on the event page, there's like over 20 people who have been able to have their picture show up on the RSVP list, which works by having them publish a page on their own website and send a Webmention to the event page. That's pretty cool. They didn't have to go and read through a whole spec that talks about everything from using an app to publish to your site to then have a federation protocol behind it. They just need to know about this much of the whole picture in order to have that work. And that's a quicker win. Now maybe you expand and start working on the rest of the building blocks.

Manton: Webmention is a great example of something that is as simple as it possibly can be. Can't really get that down any simpler. So people get it. Microformats is similar in that it's very approachable and transparent. If you know HTML you can figure out how to do that. You have Microformats 1 and 2, and remind me... Because Microformats predates...

Tantek: ...IndieWeb. 2005.

Manton: And did that launch at SXSW or something like that?

Tantek: Shortly thereafter. I think we had sessions about it at SXSW in 2005, in March. The site launched in June itself. Until then we had just been doing it on the Technorati wiki. And my co-founder of the Microformats.org community, Rohit Khare. He's like, "hey, happy birthday, I bought you a domain name." And I was like, "really, you think this is worth having its own domain name?" That was my actual response.

Aaron: Wow.

Tantek: Because it seemed like such a simple stupid dumb thing. And he's like, "yeah." Okay, I guess we should do this then, and then we set up the site and well, what do you need on a community site. You need a mailing list, you need a blog, you need a wiki. So we set all those up. Since then we've learned that the primary ways of actually making progress are the wiki and IRC channel (or Slack) — an archived IRC channel. But that was definitely a response to, again, complexity. Like the whole RDF world — all that insanity — and the Atom/RSS wars back in the day, and then Atom going to IETF instead of W3C because there was a giant fear that it would just be turned into RDF at W3C. That's how Microformats 1 started.

Tantek: We basically did make it look as dumb as possible. Let's just take the names of the terms from the vCard spec and use them as class names. That was what I proposed in 2004 at FooCamp. And I ran it by Ray Ozzie at the time, who was like architect at Microsoft or something, but also just from Lotus Notes, you know he has a long history. He's like, "yeah, that could work."

Manton: So now we're almost 15 years since then. Looking forward, there's a lot of talk about generations — 1, 2, 3, 4 — moving up and making it more approachable and just easier for people to use. Obviously we can't predict 15 years from now. Who knows what's going to be around. Is Twitter going to look the same, are blogs going to be the same...

Tantek: Is Twitter going to be around?

Manton: Exactly. There're no guarantees. A lot of people... So much time, they don't remember before Twitter and Facebook and so it's hard to imagine sometimes that those things could go away. But they could. They're just web sites. Businesses built by people that make mistakes and do good things sometimes.

Tantek: Yeah, sites that become boring and people move on to what's interesting. I think Facebook really extended their lifespan by buying Instagram.

Manton: Where do y'all see just over the next few years. How close are we to making this more mainstream or is this going to be just more time churning away building tools, trying to spread awareness.

Tantek: It's kind of hard to predict. I do feel like we're entering a new phase right now. I think we've had two phases, two very long phases of the IndieWeb community so far. One was this I almost want to say like Big Bang phase in the very beginning where there were all these different things coming out. People trying all kinds of different approaches, like Ward Cunningham did his federated wiki project. He figured out a way to do all this Javascript-based wiki federation thing that he loved. And other approaches. But then we started to coalesce around: use your own site, use Microformats. We actually used Pingback for a while until Sandeep Shetty showed up and he's like, "hey, I've got this proposal for a simpler version called Webmention that does this." And everyone in the community was like, "well, that completely aligns with our values of making things simpler." So we instantly adopted it even though none of us knew who this guy was. And then we just ran with it.

Tantek: So the first four years was this explosion of getting basics working. We got RSVPs and events working by 2013. And that was kind of like, "whoa, we federate events and RSVPs," which we were always looking for ways that in the actual things we do, how can we use the technology that we're making. And after that, clearly we need to get these standards — that are barely specified — solid, testable, working, dependable, to reach the next level of stability.

Tantek: And then there was the second phase which was the work of making all these standards formal and reliable and secure and handling edge cases. We did that from I would say 2014 through 2017, and a lot of that was done in the social web working group that I was co-chair and Aaron was in, edited a bunch of the documents. Evan Prodromou was also co-chair, from StatusNet. But that was kind of a maturing phase. There were a lot of new features people were figuring out all the time, and new infrastructure like Bridgy during that phase.

Tantek: But I feel like a big part of that second phase was everything that was getting built was getting fed back into fixing the standards. People would build something, they would get to the point where they were like, "hey, this didn't quite work, we have to fix a standard to handle that." Okay, we fix it. They get it working. We have test suites for all these standards. And now when people are implementing things like Webmention or Micropub or whatever they're not really running into new problems. What they're running into is questions of how, not "this doesn't work". So we've reached this level — and I think Microsub, that might be one of the last pieces that kind of wraps it up. That's why I feel like we're closing on the second phase.

Aaron: And IndieAuth, too, because that was only written as a spec this year. Before that it was actually very interoperable, and there were several implementations before, but it was never written down as a proper spec. So that's now this process of let's formalize that.

Tantek: And we even formalized how do we update the Microformats parser spec and the vocabulary. That's been much more formalized as well. So people have an idea that when I proposed something, when can I depend on something vs. what's experimental, and then what's the path.

Tantek: The Big Bang, the amazing explosion of cool stuff and then this sort of maturing of the standards to make stuff work reliably even just amongst theirselves. You mentioned you want everyone to have their own presence. But when I think about that I think, "people want things that are reliable, that just work." And I think this second phase was us doing the difficult plumbing work of the details to make things just work.

Aaron: That leads into what I think is the next phase is getting more people building systems using these building blocks.

Tantek: I think Micro.blog was evidence that that phase was ready to enter.

Aaron: So now as someone who is building out a platform that is intended for end users... Whereas I'm building my web site. I do not want an end user to use that software. It is not the goal explicitly. But you're building software that is intended for end users. You now have a pattern to follow where if someone else comes along with the same goal and build something, they work together. And so I think in order to reach the goal of people can just use this stuff out of the box, we need more people building tools that are intended to work out of the box for people on the same stacks. And four years ago, if you had come around and started this thing, there wasn't a pattern to follow to make that work across implementations. And there is now, because of the work over the last four years, since 2014, of formalizing these specs, and having that actually hardened.

Tantek: We tried to do each spec as its own little building block piece. I would say hard but honestly I think greater chance of long-term success. The traditional approach that architects take is the stack approach or platform approach where they figure out the entire API. The whole thing. If you look at how OStatus happened, or even like ActivityStreams and ActivityPub. That's very much a "we're going to solve the whole problem". And then we'll iterate that whole big thing and then it turns out that's both really hard to do and once again you end up with the problem that there's only a handful of people that can implement it.

Aaron: And also I think more importantly that also has the problem of: if you realize there's a mistake in it, then you have to essentially throw out the whole thing and make a version 2. And Microformats is a good example is this evolution. Microformats 1 vs. Microformats 2... they're completely incompatible. They don't work the same way, but you can still send a Webmention with Microformats 1 markup and it works. Webmention doesn't have to change. So people build out Webmention tools and infrastructure, the thing on top of that is the Microformats to make it actually look good and make a comment work. Microformats can change and evolve, and Webmention doesn't have to evolve. Whereas when you end up with a monolithic stack, if you're like, "oh crap, we don't like the things we decided for this layer in the stack." We can't just swap out that layer because then the whole stack breaks. That's part of why the approach we've taken is harder, because you have to treat each one independently and evolve each one on its own schedule. And they all have their own change-control process.

Tantek: It looks more chaotic.

Aaron: Yeah, and it is little more overhead in terms of: each spec has its own document and test suite that is for each one specifically. But I do think that's the better approach for a longer term success.

Aaron: We're essentially entering this third phase of now we have stuff, we need the tools built on it, but we also don't want to then four years from now turn around and say to everybody who's built these tools, "oh, we've changed now, we've decided that we're going this whole different approach and redo all your stuff." No, we want to make sure that those are all based on ideas that are technically proven and easily swappable in small pieces if you need. But if we were to suddenly say, "we decided that Webmention doesn't work and we need a third parameter and go fix Micro.blog." You'd be like, "well crap, now what, do I do that, do I abandon it, break interop and continue iterating on my own product?"

Tantek: The other big thing that happened is that we expanded greatly in Europe. International. I think that really started with... was it 2013, the first Brighton IndieWebCamp? We're looking to try to scale it beyond — and we've done this somewhat in Europe — but I think we want to see more of it. The things in the community running and people running IndieWebCamps and Homebrew Website Clubs without needing to even check with Aaron or me.

Tantek: I would be happy to help out as a guide or mentor more than a leader in that respect. And I think that's the way we're going to keep scaling it. And in the next 4 years, I would like to see us in more countries. I would like to see us reach more diverse populations. Maybe people that aren't just in the tech crowds, but people that are not earning as much money, right? Everyone has a phone number supposedly. No matter what you're earning or not. And I even hear from developers of new services that kids just use SMS, they don't even want to deal with email. And so people doing new apps have purely SMS-based sign-up flows and all that. So there's definitely opportunities to reach — to keep innovating and figuring out how can we reach even a broader set of folks in that regard.

	

	
	Part 4: Hypertext

"The result is a loose federation of documents — many small pieces loosely joined. But in what has turned out to be simply the first cultural artifact and institution the Web has subtly subverted, the interior structure of documents has changed, not just the way they are connected to one another. The Web has blown documents apart." — David Weinberger

We are so used to seeing "HTML" and "HTTP" as acronyms that it has probably been a while since you've seen the “HT” part spelled out. Hypertext is text with some words or phrases linked to other documents. It was the breakthrough for the web.

There are more web sites than ever. But there is also significant content in web applications and native apps. These apps will often have limitations on what can be displayed, only storing text and photos in a format that suits the particular app, not the loose structure that HTML allows.

For apps like Instagram that don't have the flexibility of allowing HTML in post text, users use the one place a clickable link is allowed — in their user profile — and then mention it in a comment.

Anil Dash's blogged about this convention and how it hurts the web:

We don’t even notice it anymore — “link in bio”. It’s a pithy phrase, usually found on Instagram, which directs an audience to be aware that a pertinent web link can be found on that user’s profile. Its presence is so subtle, and so pervasive, that we barely even noticed it was an attempt to kill the web.

Instagram is not alone. Most social networks have taken the rich expression of HTML, with inline links and photos, and simplified it down to just text and URLs appended at the end of a post. Twitter will auto-link pasted URLs, but won't allow other linked text.

Snapchat and TikTok barely exist on the web at all. They are built on web technologies while relegating actual web browsers to the status of second-class citizens, only useful to funnel users into closed platforms behind native apps.

When content is inside an app, the content’s location becomes opaque. There might not be an obvious URL to that content. If there is no URL, there can be no emphasis on custom domain names, because there is no user-visible domain name at all.

Links and photos are a fundamental part of how the web is extensible and open. I'll never forget the impact this first had on me, sitting at my old Mac Classic in 1994, dialed up to the web through a BBS gateway, tabbing through links to download the first photos from the Shoemaker-Levy comet.

That awareness of linking out to the wider world of text and photos was magic. It's still possible on the web today, if we don't lock down content behind apps that shun basic web technologies like HTML.

Photography

“Every once in a while, a revolutionary product comes along that changes everything.” — Steve Jobs, introducing the iPhone

Smartphones changed photography. Between the 2007 introduction of the iPhone and the 2010 release of Instagram 1.0, the most popular camera brand based on upload stats for Flickr was Canon. By 2015 the iPhone had become the second most popular camera based on Flickr uploads, on its way to becoming the first.

Om Malik blogged about the appeal of iPhone photography even though he owned more expensive standalone cameras:

While these don’t compare to the high-end cameras and even pricier lens, they make the amateur in me feel encouraged about photography. I think this is the ultimate beauty of iPhone — it has made photography not scary. It has removed technology and made it just an act of creation.

That same year, Phil Schiller was John Gruber's guest at The Talk Show live at WWDC 2015. They talked about how Apple had become "the" leading camera company in the world.

It's a point that John Gruber would echo again and again, including in his review of the iPhone XS a few years after that interview with Phil Schiller. It seemed that Apple had not only become the leading camera company but also had an insurmountable advantage:

iPhones can’t compete with big dedicated cameras in lens or sensor quality. It’s not even close. The laws of physics prevent it. But those traditional camera companies can’t compete with Apple in custom silicon or software, and their cameras can’t compete with iPhones in terms of always-in-your-pocket convenience and always-on internet connectivity for sharing.

In his 2009 book, Chase Jarvis captured this shift to the iPhone becoming more than good enough. The best camera is the one you have with you contained hundreds of photos, all taken on the original iPhone, but it also contained permission for us to use a camera that wasn’t technically the very best:

Inherently, we all know that an image isn’t measured by its resolution, dynamic range, or anything technical. It’s measured by the simple—sometimes profound, other times absurd or humorous or whimsical—effect that it can have upon us. If you can see it, it can move you.

With this introduction, Jarvis drew a line: the mobile phone was now good enough. It was good enough to create art. The quality of a photo was in the subject and composition, not in megapixels.

And the iPhone was going to get better. It was in this window of time as smartphones were taking off that Instagram arrived. Yet the founders of Instagram almost missed it. Originally intending to build an app for check-ins, in the spirit of Dodgeball early on and Foursquare and Gowalla later, founders Kevin Systrom and Mike Krieger noticed that their users were increasingly using the app for photos. As Kevin recalled in an interview for the podcast How I Built This, one key insight was introducing filters:

We just need to be able to make people feel like their photos are worthy of sharing.

Two other qualities of Instagram helped it succeed. They were both limitations, not features. Instagram had no reposts, and it required all photos to be square.

This section is framed around HTML and photography, but it's about more than photos. It's about how decisions we make in software design (and how that software is used) affect our interaction with platforms and the web.

Influence and reposts

“It was a land of vast silent spaces, of lonely rivers, and of plains where the wild game stared at the passing horseman.” — Theodore Roosevelt

Paul Kane travelled down the Saskatchewan River, sketching and painting Native Americans. It was one of multiple trips he undertook to the Pacific northwest in the 1840s. He would make watercolor paintings of landscapes, capturing a snapshot of the trip in a time when there were few photos.

Along the way he would write in his journal. The journal entries were short snippets of text, not unlike microblog posts, with dates for when the traveling party arrived or departed villages, and who they interacted with:

made a sketch of the Buffalo feeding in a valley called long grass

He returned home with hundreds of drawings. Paul Kane used them as the basis for new oil paintings, people's first glimpse of the American West.

December 2001, 150 years after Paul Kane made those trips, I looked into a print of one of his portraits on my wall and snapped a photo with my camera. I synced the photo to my Mac and uploaded it to the Mirror Project.

Between then and 2006 when the Mirror Project went offline, over 30,000 photos were uploaded. The photo uploaded to the Mirror Project immediately after mine was by Derek Powazek. Derek was the one who had registered the domain name mirrorproject.com, adding to the project started by Heather Champ, with further improvements by Aaron Straup Cope. That photo by Derek was one of dozens he posted, a moment in time, capturing a trip to Boston to catch up with old friends.

The Mirror Project was like a community photo blog. Every post was a microblog post: just the photo, the location, and a few sentences of text. It was a platform that gave people a reason to post photos of themselves to strangers.

There were no trends or influencers. It was years before the iPhone was announced.

Instagram was designed around making it easier to share photos of the experiences we were excited about. The amazing place we visited, the beautiful sunset, the delicious food. In an interview with Stella Bugbee for The Cut, Instagram co-founder Kevin Systrom talked about how that was a goal of the platform:

When I’m on my bike, I go across the Golden Gate Bridge and it’s full of people taking selfies. And I’m sure that drives them to want to go, because they have to show people they visited San Francisco. But I think broadly, you’re having an experience, and the joy of that experience you want to go share with people you love. And I think that’s great. That’s why we created the platform.

There was an explosion in the quantity of photos being taken and shared online. With photos being shared to both friends and strangers, we think about the quality of the photo much differently than if we were just keeping the photo for ourselves or sharing it with family. We don't need to impress our family with the perfect shot.

When Instagram was smaller, it might not have seemed much different than the Mirror Project, or Flickr. It was a way to upload photos and share them with friends. But instead of keeping that community feel, Instagram started a subtle shift to reward high-follower accounts indirectly: those people who had such a large audience that they had influence over the spending habits of their followers.

Summer Bedard documented this shift for Adjacent, a journal from the Tisch School of the Arts at NYU:

Suddenly in 2010, everyone had a camera with them all the time because you could have both a camera and a cell phone called “the iPhone”. So now, everything was photographed. Every moment from the magical to the mundane was an opportunity to share something. The tiny photo sharing space on the internet, once populated only by tech nerds and photography enthusiasts, now included Aunt Michelle, Cousin Becky, and all the high school friends you thought you left behind on MySpace. Then came the brands.

This depressing post by Paul Reiffer tells the story of how Instagram "influencers" are disrespecting and ruining special places. It's a gift to be able to capture and share a beautiful scene, but it becomes corrupted when it's all about "me" and the number of likes, and not the place itself:

These weren’t people wanting to enjoy the view – or even capture the scenery to share and enjoy well into the future with friends. These are people so obsessed with their own sense of self-importance for the sake of a few instant “likes” on their social media profile that they find it perfectly acceptable to trespass, steal, disrespect the workers and their land – all in the name of “influencing”.

Back in the 1840s, there was a sense of authenticity to Paul Kane's paintings. But they were also sometimes exaggerated, bringing out the most dramatic view. His paintings walked a fine line between respecting the subjects and exploiting them.

The same can be said of the perfectly-staged shots on Instagram. Something gets twisted when the photo's only purpose is to feed the like and retweet counter. When a photographer gets so obsessed with getting the shot, especially at remote places they may never return to, the scene loses its authenticity.

And it goes further than that. The race for the most likes and retweets feeds into an algorithm that has negative consequences for the community. Reposts have become part of the problem.

Twitter has retweets. Facebook has sharing. But Instagram had no built-in reposting. On Instagram, there was no instantaneous way to share someone else’s post to all of your followers.

The first version of Instagram was built by a very small team. They had grown slowly and expanded the UI thoughtfully. I think the lack of a repost feature was deliberate.

Sarah Frier confirmed this in her book about Instagram, No Filter:

If Systrom and Krieger wanted to fully copy Twitter’s concepts, it would be obvious, at this point, to add a reshare button, to help content go viral like the retweet did. But the founders hesitated. If what people were sharing on this app was photography, would it make sense to allow them to share other people’s art and experiences under their own names? Maybe. But in the interest of starting simple, they decided not to think about it until post-launch.

When you have to put a little work into posting, you take it more seriously. At the end of 2016, there was a debate about the role of fake news stories, a topic we'll return to in Part 6. I wonder if fake news would have spread so quickly on Facebook if it was a little more difficult to share an article before you’ve read more than the headline.

Instagram is just photos. Landscapes and people, buildings and food, not just images that are screenshots of text. Real photos are inherently more immune to controversy than news headlines.

It’s not easy to build software that encourages good behavior. When I look at my Instagram timeline I see beautiful photos, hand-drawn art, and snapshots of everyday life. I see the very best of the world. It’s not the full truth, but it’s all true.

Instagram was no accident. The only question: was it unique to photos, or can the same quality be applied to microblogging?

There is a connection between influencers and ads. Platforms can reward and encourage influencers, such as how YouTube sends personalized “play button” plaques to video creators when they reach 100k subscribers and other milestones.

As influencers promote products, it blurs the lines between real content and ads. Native advertising becomes an accepted part of the experience instead of a jarring break from reading or watching content.

Social networks like Facebook (and Twitter) are designed to reward the sensational video. The timeline algorithm, "like" counts, and quick re-sharing — these all contribute to surfacing both the best and worst content. Whatever drives engagement.

And that comes from their massive scale. Jeffrey Zeldman wrote about how ad-based services like Twitter need as many posts as possible:

Twitter, for instance, needs a lot of views for advertising to pay at the massive scale its investors demand. A lot of views means you can’t be too picky about what people share. If it’s misogynists or racists inspiring others who share their heinous beliefs to bring back the 1930s, hey, it’s measurable. If a powerful elected official’s out-of-control tweeting reduces churn and increases views, not only can you pay your investors, you can even take home a bonus.

Anything that threatens that scale, threatens to disrupt how the algorithm amplifies engagement. With fewer posts and less relevant ads, it threatens their business.

In leaked audio of an internal Facebook meeting, Mark Zuckerberg said he would fight if Elizabeth Warren was elected president and her justice department tries to break up Facebook:

We care about our country and want to work with our government to do good things. But look, at the end of the day, if someone's going to try to threaten something that existential, you go to the mat and you fight.

But Mark doesn't have to tip the scales on purpose. The platform amplifies the controversial. Charlie Warzel expands on this in an opinion piece for The New York Times:

Yes, Facebook’s willingness to let politicians lie sets a worrying precedent. And yes, lack of oversight into the platform’s decisions opens up a host of plausible election interference conspiracies. But Facebook’s essential threat to democracy isn’t that Mr. Zuckerberg will intervene on behalf of his preferred candidate — it’s more fundamental than that. Mark Zuckerberg need not intervene, because Facebook, the platform, will do so instinctively. With its algorithmic mandate of engagement over all else, Facebook has redefined what it means to be a good candidate — and provided a distinct natural advantage to those who distort the truth and seek to divide.

Being a "good candidate" is no longer about long, thoughtful speeches on policy. It's about short, retweetable sound bites.

Chris Wetherell, who worked at Twitter on the retweet feature, talked to Alex Kantrowitz at BuzzFeed News about how the retweet was like handing a loaded weapon to a 4-year-old. The retweet was a powerful force that required very little work or thought, with wide ripple effects as a tweet spread quickly. Chris said:

It did a lot of what it was designed to do. […] It had a force multiplier that other things didn’t have.

Alex continued in his article:

But the button also changed Twitter in a way Wetherell and his colleagues didn’t anticipate. Copying and pasting made people look at what they shared, and think about it, at least for a moment. When the retweet button debuted, that friction diminished. Impulse superseded the at-least-minimal degree of thoughtfulness once baked into sharing.

Alexis Madrigal explored the impact of retweets for The Atlantic. Anger spreads fast via retweets, as Alexis said leading Twitter to feel “feel frenetic, unhinged”. As an experiment, Alexis disabled all retweets for everyone he was following:

Retweets make up more than a quarter of all tweets. When they disappeared, my feed had less punch-the-button outrage. Fewer mean screenshots of somebody saying precisely the wrong thing. Less repetition of big, big news. Fewer memes I’d already seen a hundred times. Less breathlessness. And more of what the people I follow were actually thinking about, reading, and doing.

Seeing more of what people were actually thinking and creating gets us back to Instagram, still focused on photos, with nothing like the retweet. It's ironic that Instagram, the platform that more than any other has been so consumed by influencers, is naturally resistant to the viral spread of news. The UI matters.

UI impacts behavior

“It is not impermanence that makes us suffer. What makes us suffer is wanting things to be permanent when they are not.” — Thich Nhat Hanh

Snapchat was different. While the UI is now commonplace — in Instagram stories, Twitter fleets, and YouTube shorts — Snapchat’s initial focus on ephemeral posts, with photos that quietly vanished after a day, helped Snapchat differentiate itself from other social networks.

Snapchat founder Evan Siegel was interviewed by Kara Swisher at Recode in 2018. Evan talked about designing for small groups of friends, removing the worry about sharing with a large group where it’s more difficult to be yourself:

When we looked at social media, one of the biggest problems that really stood out to us was this constant conflict between needing to have a small group of friends to feel comfortable expressing yourself, but also needing to have a large group of friends so that you can watch more content.

Some people have experimented with bringing a Snapchat-inspired ephemeral UI to blogs, with short videos that go away. In 2017, Aaron Parecki added stories to his home page, indicated with a circle around his profile photo, similar to the UI from Instagram Stories.

But the foundation of blogs is as a record of the author’s writing, of ownership, of remembering both the important and the mundane. The audience of a blog isn’t pinned down with specific follower counts. It could be a few friends or family, or could be anyone coming in from a Google search result. Micro.blog and blog-like platforms are unlikely to have ephemeral posts without carving out entire new sections of their UI, reserved just for a different type of content.

We've seen how UI design choices can encourage or discourage certain types of posts multiple times in the history of Twitter. When users on Twitter started including hashtags in their tweets, the team at Twitter thought it would be useful to link those to a search. That way, any hashtags would link to all recent tweets using that hashtag. It was a new, ad-hoc way to group related tweets together.

The hashtag as we know it today was first suggested by Chris Messina. Before Twitter supported it as a built-in feature, Chris wrote about using Twitter's "track" feature to get notified when keywords were used:

Hashtags become even more useful in a time of crisis or emergency as groups can rally around a common term to facilitate tracking, as demonstrated today with the San Diego fires (in fact, it was similar situations around Bay Area earthquakes that lead me to propose hashtags in the first place, as I’d seen people Twittering about earthquakes and felt that we needed a better way to coordinate via Twitter).

But hashtags and full-text search can also be gamed. Hashtags have been so overused on Instagram that Instagram put a cap on the number of hashtags that could be used when posting a photo, leading to the common practice of adding extra hashtags as the first comment on a post.

Worse, people will piggyback on trending hashtags to insert their own tweets into conversations between people they aren't following. They will attack strangers who post about the same topic, especially if it's divisive like politics.

When first blogging about hashtags, Chris recognized this potential to discover and join another conversation, but in the early days of Twitter viewed it only as a positive thing:

Every time someone uses a channel tag to mark a status, not only do we know something specific about that status, but others can eavesdrop on the context of it and then join in the channel and contribute as well.

As platforms like Twitter and Instagram have grown, the behavior around hashtag search had to be modified. There are just too many posts. Both platforms use an algorithm to determine what tweets and photos to show for a hashtag search.

An algorithm might not have intentional bias, but any filtering has an impact on what we see. In 2020, BuzzFeed News covered a bug in Instagram’s hashtag search that included some posts incorrectly, effectively favoring pro-Trump posts in a search for the hashtag #JoeBiden:

Searches for Biden also return a variety of pro-Trump messages, while searches for Trump-related topics only returned the specific hashtags, like #MAGA or #Trump — which means searches for Biden-related hashtags also return counter-messaging, while those for Trump do not.

For Micro.blog, I didn't want to start out supporting hashtags. By not linking hashtags in a post on Micro.blog, users will find less value in them and slowly stop using them. As a side effect, posts are much cleaner without hashtags, so the timeline feels less cluttered.

Mastodon posts are by contrast often overloaded with hashtags, even more so than on Twitter, further hurting readability. Some of that user behavior to overuse hashtags comes from how search in Mastodon works. Search in Mastodon only indexes hashtags. If you don’t use hashtags, your post cannot be found via search.

The UI for hashtags impacts how users behave. It encourages using certain features, and discourages others. It shapes what people include in their tweets and how they format it.

Communities are also shaped by the tools members are given. Longer posts might lead to more thoughtful replies. Heated debates might be tempered if the UI encouraged hitting "pause" on conversations before they escalated into personal attacks.

In 2014, Benjamin Grosser wrote a paper about metrics in social networks and how they affect social interaction. He documented where metrics are used, from Facebook's friend counter to all the little totals of likes and pending messages that cover the News Feed:

Likes given demonstrate our taste and culture to others, while likes received suggest that our statements and collections are worthy of recognition. When this need for esteem intersects with the desire for more, the accumulation of social and symbolic capital becomes the primary objective of the metricated social self.

Some of these metrics feed into Facebook's ad platform. Some metrics measure our engagement and invite us to keep clicking: new friends, more likes, fewer unread messages. This behavior is baked into the UI that Facebook designed.

Even blogging platforms that might seem to have the opposite intentions of Facebook still were designed to encourage certain behavior. As we covered in Part 2 with alternative blogging platforms, Ghost needs you to put a title on all your posts, making it unsuitable for microblogging. Whenever you create a post without a title, Ghost reverts it to the placeholder text "(untitled)", which shows up on the published blog:

[image:]

Ghost is actively getting in your way. Not only was it not designed for title-less posts, there is special code in the app to discourage it. A well-meaning feature ("don't let the user accidentally leave a blog post untitled") turns from a user experience improvement to a detriment.

Contrast with Tumblr's UI, which wants you to create short posts without a title. To get started, you see these buttons:

[image:]

It encouraged people to be thoughtful about what kinds of posts they were creating, and to see those as distinct portions of a web page. This puts the focus on the content and not on layout and design issues.

Mac developers have a long history of building apps with opinionated, thoughtful designs. This inspiration comes from Apple, where some of the limitations even in the first Mac were offset by beautiful attention to detail in other areas. There were no arrow keys on the first keyboard, even though it was standard on PCs, to encourage users to use the mouse to move the insertion cursor or select text.

So we look for ways to make the user experience familiar and approachable. In 2004 as Brent Simmons was working on MarsEdit, he wrote about making blogging more like email, which people were familiar with:

The idea behind MarsEdit is this: the value of having an email-like user interface is not just that it’s easy-to-learn—it’s that it helps people get into a more email-like frame of mind, where they’re more likely to be relaxed, less pressured to Write Something Good.

Software can be opinionated — designed to encourage a specific way of working with data — without being inflexible. It doesn't need to hold the user back to point them in the right direction.

Photographers have long loved the format of square photos, or nearly square, like the 4x5 aspect ratio that was used for most of Ansel Adams’s famous photos at Yosemite. Writing about his 1940 photo Clearing Winter Storm in the book Examples: The Making of 40 Photographs, Adams also touched on the process of using filters for the shot, and further tweaks with dodging and burning in finally developing the negative:

I think of the negative as the “score,” and the print as a “performance” of that score, which conveys the emotional and aesthetic ideas of the photographer at the time of making the exposure.

The process of making a photo in the 1940s was tedious by today's standards. Adams would visualize the image, testing the framing in his mind, or use a black and white Polaroid to capture what it would look like before he was ready for the final image.

Working today, photographer Adrian Vila’s photos are in part a throwback to that earlier time. He shoots in black and white, looking for contrast as he captures a rainy day alone off the coast of Spain, or the fog at sunrise over San Francisco, or other landscapes that become timeless stills to suggest a quiet pace.

In a video about composition, Adrian talked about the appeal of square photos:

The square format was been with us for a long time. What I like about it — and this just my opinion — is that it creates more balanced images than other aspect ratios. It invokes calm. ... It is very good for minimalistic images, and it favors centered subjects, so it gives it more importance in the frame.

Defaulting to square photos enforces that composition right away. It removes the friction of choosing how to frame your photo, making it easier for users and more likely that most photos will fit well in both a timeline or grid.

Adrian would follow up in more detail about square photos in 2022:

Placing the subject in the center is the most natural way to compose. This works especially well with clean images when there are not too many distracting elements around the subject. As we said earlier, the eye tends to move in a circle around the frame, so the cleaner the image the better. […] I believe it makes for very peaceful, still, serene, and calm images.

...

In 2005, Instagram founder Kevin Systrom took a photography class in Florence, Italy. His teacher gave him an old Holga camera, which took only black and white, square photos. Setting aside a modern digital camera and using the Holga was about learning to work with constraints.

Sarah Frier recounted the story in her book No Filter:

Systrom spent the winter of his junior year, in 2005, snapping photos here and there in cafes, trying to appreciate a blurry, out-of-focus beauty. The idea—of a square photo transformed into art through editing—stuck in the back of Systrom’s mind. More important was the lesson that just because something is more technically complex doesn’t mean it’s better.

Years later the square photo default would make it into Instagram. Making this format the default was a particularly good fit for a mobile platform.

In a timeline like Instagram or Micro.blog, square photos don't push the first caption off the screen like a portrait photo. And when a landscape photo is cropped square, it's effectively zoomed in to cover the same width, so the subjects of the photo are larger. You can fit more photos on a mobile screen with fewer compromises.

[image:]

So we have all of these photo features and filters in Micro.blog. Why? By building these photo features in, the software is sending a message. It's inviting the user to take photos seriously. It's inviting the user to experiment, to tap around and share a photo, since the feature isn't buried in the app or left to an external app.

[image:]

We care so much about photos that we build a companion app just for photos called Sunlit. The discover screen also sends a message. It says: "if you put a little thought into your photo, something that looks kind of interesting, your photo will go here too." Everyone can find it and follow you.

We are over a decade after Mark Zuckerberg’s infamous “move fast and break things”. It is time for developers to slow down. We can’t predict exactly how users will use the tools we build, but we must be more thoughtful about it, asking the right questions, and ready to pivot if a feature doesn’t end up being a force for good.

For a specific platform, does this feature encourage the kind of community we want to see? For the web, does this feature support openness in other systems?

Even Facebook is realizing this. Helle Thorning-Schmidt, former prime minister of Denmark and co-chair of Facebook’s new Oversight Board, said to Casey that “Facebook was always criticized for moving fast and breaking things,” when asked about how the Oversight Board will hear appeals from people whose content has been removed from the service:

I think we are looking at the opposite — we want to look at quality, and look at how we are here for the long term, rather than to move quickly and be under a lot of time pressure.

The web would not be the same if it was just text. It would not be the same if it was just photos, or just links. Hypertext allows us to combine all of these things into one web. Platforms that build on HTML will add to the web instead of trying to replace it — instead of standing as a silo apart from it.

Using HTML

“HTML documents represent a media-independent description of interactive content. HTML documents might be rendered to a screen, or through a speech synthesizer, or on a braille display. To influence exactly how such rendering takes place, authors can use a styling language such as CSS.” — HTML5 specification

The most misunderstood part about Micro.blog is that it's primarily a Twitter replacement. It's not. It's a different view into the web, like a feed reader. The Micro.blog platform is the glue to make that possible. The platform is a byproduct of trying the reach the goal, not the goal itself.

Indie microblog posts are just blog posts. They may have more limitations — no title, shorter text, and usually simpler formatting — but they still use HTML like any blog post.

We should avoid special formats that require new clients to be written. By using HTML for indie microblog posts, blog posts work consistently on the web, in feed readers, and when writing a new post from a blog editor.

By contrast, tweets are effectively stored as plain text. Twitter parses the text and stores extra metadata for it, such as keeping track of where @-mentions and links are.

Pulling a tweet from the Twitter API, you might get a response that looks like this:

"text": "Hello world!\n\nHere's a link: https://micro.blog/",
"entities": {
 "urls": [
 {
 "url": "https://t.co/KrFEuTQtGo",
 "expanded_url": "https://micro.blog/",
 "indices": [28, 47]
 }
]
}

When showing the tweet on the web, Twitter converts new lines and URLs to HTML. Native apps are likewise responsible for taking the plain text and rendering it with clickable links.

The same post on an indie microblog will use HTML:

<p>Hello world!</p>
<p>Here's a link.</p>

Whether you're seeing the post on the web, reading it in a feed reader, or getting it from Micro.blog's JSON API, it will always look the same. Indie microblog posts are just parts of a web page. They can be adapted for different client app UIs by styling with CSS.

Photos on indie microblogs are img tags. Keeping it this simple means it will be compatible with any existing blog software.

When posting a photo with Micro.blog, the text is included first, followed by one or more photos:

[image:]

Here's what the HTML for that post looks like

<p>New stickers.</p>
<p></p>

Micro.blog scales down photos to about 1800x1800, and uses 600x600 in the HTML. This 3-1 ratio looks great on the iPhone's 3x retina screens, and is a good width for most of the default themes.

It might be tempting to just paste in domain names or URLs and expect they will be correctly linked by a client. And in some cases they might be. But you should always produce HTML with proper links, so that it works in a wide variety of RSS readers.

Micro.blog pre-processes some text. If you paste in a URL, Micro.blog will automatically create a Markdown link for it, using the domain name as the link title. When you edit the post again, you'll see the Markdown link.

If you enter this text for your post:

Here's a link: https://micro.blog/

After it saves to Micro.blog, it will become:

Here's a link: micro.blog

From there, it can be converted to HTML with a standard Markdown processor. This happens automatically when publishing your post to a Micro.blog-hosted blog. And if you ever migrate your blog to another platform, all the Markdown will continue to work, because it didn't include anything special just for Micro.blog.

This gets back to a core principle: we are not inventing a new format or protocol. We are building on existing web standards. Indie microblogs should gracefully fall back to work in web browsers and feed readers.

Allowed HTML tags

Some microblog clients will use a web view to display blog posts, and some clients will write their own renderer for HTML in a post. HTML tags should be restricted to a common set that will be well-supported everywhere. The most basic styling includes tags such as b, strong, i, etc. CSS and class names won’t be used because they are usually based off of a site’s full design which won’t be available from a post in a feed.

Micro.blog’s full list of supported tags include:

		a, span, b, i, img, strong, em, div, p, br, blockquote, ul, ol, li, code, pre, audio, video, source

And these attributes are allowed on certain elements:

		a: href, title, class

		span: style, class

		img: src, style, class, width, height, alt, loading

		audio: src, controls

		video: src, controls, width, height, preload, poster, alt, playsinline, style, class

		source: src, type

For style, only these CSS property names are allowed:

		width, height, max-width, max-height, min-width, min-height, border

Any HTML tags or attributes not in this list will be stripped out. This also includes removing JavaScript. While you can use JavaScript as much as you want on your indie microblog, Micro.blog will prevent it from running in the timeline so that it can't interfere with other posts or users browsing the timeline.

There is one thing to watch out for when using HTML for links instead of always showing the URL: it is possible for a nefarious user to trick someone into clicking on a link. Platforms that use HTML may choose to always show the domain name next to the link, to give the user more information about where the link goes.

Markdown

Not everyone should have to learn HTML or even know what it is. Markdown is an alternative markup format that is easy to learn and popular enough that it has become a de-facto default for many text editors. But Markdown was created with HTML in mind, so by using Markdown we get consistent HTML output instead of custom markup for an individual platform.

While most of Markdown's syntax is allowed on Micro.blog in posts and replies, you should limit markup to simple formatting and links so that it reads well in microblog posts.

Emphasis: To emphasize some words or phrases, surround the text with single underscores. This will produce italic text when shown on your microblog and in the timeline:

Here is some _italic_ text.

For stronger emphasis, surround the text with two asterisks. This will produce bold text:

Here is some **bold** text.

Links: You can link to another URL by using the following syntax, with the title of the link first, followed by the URL:

Go check out [this web site](http://micro.blog/).

Blockquote: To quote from another blog post, include a paragraph (separated by blank lines) that starts with the > character:

> This is a quote from someone else.

Headers: While headers shouldn't be used in short microblog posts, they can be useful for longer posts and custom pages. Start a new line with one or more "#" characters to turn the line into a header:

Section 2

Inline photos

Photos in Markdown are where more attention is needed. Because Markdown syntax for referencing an image does not support width and height attributes, it is best to use the img HTML tag directly.

When cross-posting from your blog to other services, Micro.blog checks the width and height to determine if it's a photo that should be included in the cross-posting. Some platforms use small images for emoji or tracking pixels. We don't want to include those when sending the post to other services. If there is no width and height attributes, Micro.blog will try to download the image to check its size.

When writing longer blog posts with multiple photos in apps like Sunlit, the app is responsible for first uploading all the photos, then creating the full HTML for the post with references to the uploaded photos.

Quotes

Since the first official standard for HTML — HTML 2.0 in 1995 — we have had the blockquote tag. This is used to wrap around a quote from someone you are linking to. If your microblog post format supports basic HTML tags, you can use blockquote rather than inventing a new format for retweet-style posts.

It then becomes a UI problem of how best to create and display quotes, not a format or protocol problem. Every platform can have its own approach to creating quotes. Micro.blog has a mostly hands-off approach, letting you use Markdown to create quotes like this:

Great line from a book I'm reading:

> Cups were filled and refilled, making you drunk with the illusion of changing the world.

Micro.blog uses block quotes for its “Embed” link on posts in the timeline. This copies some HTML to your system clipboard for pasting into a new post, using Quotebacks to style the post so that it looks nice.

Platforms that invent their own format for retweet-style quotes may have other incentives. By formalizing a quote as its own distinct type of post, they can measure the reach of a quote. On Twitter, quotes are treated very similarly to retweets. On Mastodon, after initial reluctance to have a quotes feature, there has been pressure from the influx of Twitter users to Mastodon to also adopt quotes.

Using HTML helps decouple content from platforms. Twitter, Instagram, and Snapchat would love everyone to post content in those platforms’ formats, because then native ads which are the same size as your own content can be inserted into the platform’s dynamic feed. Posting content as HTML to your own site lets the content be readable in a variety of services based on the open web, from pages at your own domain name, to feed readers or newsletters.

Starting a new photo blog

“Am I always starting over

In a brand new story?

Am I always back at one

After all I’ve done?”

— Always Starting Over, from the broadway show If/Then

Of everything you put into social networks, photos are one of the easiest and most rewarding parts to reclaim for your own site. This is a guide for starting a new photo blog that you will actually consistently post to.

Stop jumping to the latest social network, trying to move your photos, or leaving the old ones behind. A photo blog is the one place for your photos that you don’t need to start over with again and again.

The first step isn't technical. It's a commitment to posting regularly on your own blog instead of first reaching for Instagram or Snapchat. A commitment to posting to a place you control, to a place you can look back to years from now as an archive of your best photos at your own domain name, regardless of what social networks come and go over the years.

If you already have a hosted blog on Micro.blog or WordPress, you can use that. If you want to start with a new space just for photos, use Micro.blog and click Plans → New Microblog. In the Micro.blog settings, you can map a custom domain to your new photo blog such as photos.yourdomain.com.

Instagram will let you download an archive of all your Instagram photos. Under your profile settings, click "Security and Privacy", or use this link to request your photos archive.

If you use macOS, install Micro.blog for Mac. Choose File → "Import from Instagram". Select the media.json file in the archive you received from Instagram. Micro.blog will let you select some or all of your photos to import, preserving the dates and captions on your new photo blog.

[image:]

See this help page for more details on importing from Instagram.

When you post a photo with some text but no title, that photo will show up directly in the Micro.blog timeline.

[image:]

Another option is to connect OwnYourGram with Micro.blog. OwnYourGram can watch your Instagram account for new photos, then copy them automatically to Micro.blog. Before setting up OwnYouGram, make sure to add your Instagram username in Micro.blog under Account → "Edit Apps".

Because of Meta restricting their API, as of this writing OwnYourGram is being blocked by Instagram and can’t accept new accounts. It’s another reminder to copy your photos to a blog that you control.

When you have your photo blog set up, there are a variety of different apps and workflows you can use to add new photos.

Micro.blog on the web: The web version of Micro.blog makes it easy to attach a single photo to your microblog post. To include multiple photos, you’ll need to upload each one separate under the Uploads section, then copy and paste a reference to each photo into a new blog post.

Copy HTML button: On the web, in the iOS app, and in the macOS app, uploaded photos get a “Copy HTML” button to copy a reference to the photo for pasting into a new blog post or blog post draft:

[image:]
Double-click a photo to view it and get a Copy HTML button.

Sharing extension on iOS: Micro.blog for iOS will show up as an option when sharing a photo from other apps, like Apple’s Photos:

[image:]

Mimi Uploader for iOS: The third-party app Mimi Uploader by Sam Grover provides a streamlined experience just for batch uploading photos. You can then copy a reference to all the photos at once as Markdown or HTML:

[image:]

MarsEdit for macOS: In MarsEdit on the Mac, choose Window menu → Upload Utility for a convenient way to upload photos directly to Micro.blog. MarsEdit will build an HTML tag for you with the size, alt text, and other options:

[image:]

Other options for sending photos to Micro.blog include posting them to a WordPress blog, so that Micro.blog will see them when it downloads your WordPress feed, and using Micropub API-based apps like Quill.

With the canonical version of your photos on your blog, you can still think about how to share those photos out to other networks. In addition to the usual cross-posting services like Mastodon and Tumblr, Micro.blog has special support for cross-posting photos to Flickr and Pixelfed.

Sunlit and photo feeds

“To the complaint, ‘There are no people in these photographs,’ I respond, There are always two people: the photographer and the viewer.” — Ansel Adams

[image:]

One afternoon before the Çingleton conference in 2012, Jonathan Hays and I were taking photos around Montreal. There was a feeling at the time that group photo sharing in particular should be much better. As everyone in a group snapped pictures of their surroundings — of people, events, food, anything — that years later, you should be able to go back to that time, to see the best photos collected together.

At the time there was no easy way to put those photos together, including text for why the photos were significant. I liked the idea of building a new app around photos, with the same themes of curation and preserving past events that were so important to some of my previous apps.

So we let the idea sit in the back of our minds, and later we wrote a little code as time allowed. At the App.net hackathon before WWDC 2013 we dove into the project in earnest, figuring out how it would sync, then over the summer took some more time to think through the user experience.

Sharing a single photo has been done a hundred times on iOS. Instagram was an important app to nail the timeline UI. There were other attempts to bring the simplicity of Instagram to other platforms: Favd for App.net, and Pressgram for blogs. But hardly anyone had attempted to tackle photo curation, group sharing, and publishing. Sunlit 1.0 was our first pass at this and we were excited to try solving a new problem with photos.

They say you should spend money on experiences — on memories, not things. Sunlit helped put those memories together, share them as a group, and rediscover them when it matters.

That vision evolved over the years. When App.net faded away, Jon and I rebuilt Sunlit around blogs. In subsequent versions it moved closer to the Instagram UI with a timeline of photos from friends, but powered by blogs.

[image:][image:]

Sunlit is separate from the official Micro.blog app because that separation lets it have a UI that makes sense for longer blog posts with multiple photos. If all of the functionality of Sunlit were added to Micro.blog, it would make the default Micro.blog photo posting experience much less approachable for new users.

When you a post a longer story with a title and multiple photos using Sunlit, it creates a full blog post, not a microblog post. Because the post has a title, Micro.blog uses that title in the timeline and links back to your post. It also attempts to include a few tiny photo thumbnails in the timeline to give a preview of the post:

[image:]

Sunlit uses Micropub to publish its blog posts. For these longer blog posts with multiple sections and photos, instead of passing an array of photo URLs in Micropub’s photo parameter, Sunlit formats its own HTML for the full post with inline image links and sends that to Micro.blog:

<p>The next day we did a bike tour of the city...</p>

<p>

</p>

<p>Murals, CN Tower, trains at Roundhouse Park, sculptures at Ireland Park...</p>

<p>

This is why using HTML as the foundation for microblogging can be so powerful. Apps are not limited to only the post formats a server platform has designed. There would be no way to create a post like this on Instagram, Threads, or even Mastodon.

Sunlit is powered by feeds. Micro.blog provides several feeds specifically for photos:

		micro.blog/posts/photos: The Micro.blog timeline you would usually see, but only photo posts.

		micro.blog/posts/media: Your timeline with both photos and videos.

		micro.blog/posts/discover/photos: A curated selection of photos across all users on Micro.blog.

		yoursite.com/photos/index.json: A list of blog posts that have included a photo, on a specific Micro.blog-hosted blog.

		micro.blog/posts/your-username/photos: The requested user's photos across any of their blogs.

The last feed includes 2 fields that aren't in other feeds in Micro.blog:

		The main image in the blog post, in JSON Feed's standard image field.

		A smaller thumbnail version of the photo, in a Micro.blog extension under _microblog → thumbnail_url.

Here's a portion of the JSON for that special feed:

{
 "id": "7754651",
 "content_html": "...",
 "url": "https://www.manton.org/2020/01/13/i-put-this.html",
 "date_published": "2020-01-13T18:01:13+00:00",
 "image": "https://www.manton.org/uploads/2020/1be7fcd16d.jpg",
 "_microblog": {
 "thumbnail_url": "https://micro.blog/photos/400/https://www.manton.org/uploads/2020/1be7fcd16d.jpg"
 }
}

These extra links in the first photo in a blog post makes it easier to build apps that show an overview of a user's photos without requiring the app to parse the HTML in all of the blog posts. For example, we use this in Sunlit's user profile screen:

[image:]

There is also a special photos page for Discover on the web, featuring a grid of photos. You access it from the "More Photos" button on Discover → Photos:

[image:]

All of these are backed by the same underlying data and feeds.

[image:]

Jonathan LaCour built a JavaScript-based photo grid for blogs called Microgram, relying on the fact that all Micro.blog-hosted blogs have a JSON Feed of photos. The script downloads the /photos/index.json feed, then dynamically adds HTML for photo thumbnails and links to the current page.

Seeing Jonathan's script was a great reminder of why Micro.blog has so many feeds. Our blogs and platforms should be as extensible as possible, allowing mashups of different APIs to build new tools.

I loved the Microgram photos, but I also wanted it to be a built-in Micro.blog feature. All blogs should be able to have a beautiful photos page by default.

The new built-in photos page looks similar to Jonathan's Microgram:

[image:]

Because it comes from a template in your blog's theme, you can style or customize it. The HTML uses CSS Grid to lay out the photo thumbnails:

<div class="photos-grid-container" style="display: grid; grid-column-gap: 15px; grid-row-gap: 15px; grid-template-columns: 33% 33% 33%;">

</div>

The CSS is included inline so that none of the built-in themes need custom CSS for the photos page to work. You can override the CSS Grid spacing and number of columns in your own custom CSS file.

If you need more control over the design, you can create a new theme for your blog and edit the template layouts/_default/list.photoshtml.html. This is a Hugo template that loops through the .Params.photos variable set by Micro.blog, which is a list of all the JPEGs on your blog. (There is a separate variable, .Params.images, that includes all JPEGs and PNGs, so screenshots and other images are also included.)

Linkblogging

“These are lean times in social bookmarking. The staff at del.icio.us has been eviscerated by layoffs, and the project is now being run by a skeleton crew. Magnolia, the other useful bookmarking site, has gone offline for the summer while it implements a new ‘don't irretrievably lose everyone's data’ feature.” — Maciej Cegłowski in 2009, developing what would become Pinboard

Linkblogging is a form of microblogging that emphasizes linking to other web sites. As you’re reading your favorite sites on the web, or following links shared from friends, you blog links to the articles that are noteworthy. Optionally you add some short commentary, but the focus is mostly on the title or quote from the web page you’re linked to. The link away from your own blog is the most important piece.

Rebecca Blood wrote about this format in The Weblog Handbook:

…for these folks it seemed the most natural thing in the world to put the record of their travels around the Web on the Web, and so a particular type of website was born. Enthusiastic surfers turned their home pages into a running list of links with descriptive text to inform their readers why they should click the link and wait for the page to download.

HTML is well-suited for the linkblog format. Snippets of HTML can have inline links, block quotes, or a photo preview. These kind of fragments work great in a timeline-like, reverse-chronological blog format, but they could work equally well assembled into newsletters. If there’s audio, they could be assembled into a podcast feed.

Whether it’s a web page of multiple posts, a newsletter, or linkblog posts in a feed reader, each component of the whole is its own self-contained HTML fragment. Using HTML gives us the most portability and reuse across platforms.

Many bloggers who regularly post link-style posts try to automate the posting so that it’s as easy as possible when they run across an interesting article. Micro.blog has a web browser bookmarklet for this. The iOS app for Micro.blog also supports sharing links from other apps:

[image:]

The draft post can include a link and title, and optionally the selected text from a web page to use as a quote.

Half of Daring Fireball is structured as a linkblog. It’s so successful that John Gruber's approach to linkblogging has been copied by many other sites. MacStories, Six Colors, One Foot Tsunami, John Moltz's Very Nice Web Site, and Marco Arment's blog are just a handful that follow this pattern. All of these sites post the occasional essay, but most blog posts link away to an external site in the RSS item, not back to their own site.

At a technical level, this difference can best be seen in the RSS feed's <link> and <guid> elements. These elements will contain URLs that either link back to the main site, or link away to an external site.

Here is where this evolving approach to link blogs starts to break down. Let's take an example from Six Colors, one of my favorite sites. In a link post about Hulu's pricing, Jason Snell actually writes 4 paragraphs of commentary (plus a footnote). This is more like an essay than a short link post that points to the external site.

Another example is when MacStories linked to Twitter's launch of Moments. A few paragraphs of quoted text, 5 paragraphs of MacStories commentary. The commentary is as important or even more important to read than whatever Federico is linking to.

Sometimes we read sites like MacStories, Six Colors, or Daring Fireball more for the commentary than for what is being linked to. But when using an RSS reader, there is too much confusion about where an item's link goes when clicked if the site's feed isn't consistent about linking everything back to its own site.

And in fact Jason Snell acknowledges this problem by offering two separate RSS feeds: the default one, with a mix of links back to Six Colors for essays and pointed elsewhere for link posts; and another feed with everything linking back to Six Colors, where the commentary lives. He also attempts to minimize confusion on his own site by giving each type of post its own icon in the site design.

The less clear-cut the distinction between essays and link posts, the more confusion we introduce to readers. In some ways, this mixed approach really only works for Daring Fireball, because his feature essays are so long, and so obviously different in format to the rest of the link posts.

Good conventions for blogging have been at a standstill for years. While part of the appeal of indie blogging is there's no one "right" way to do it, and authors can have a strong voice and design that isn't controlled by a platform vendor, we must accept that Twitter has taken off because it has a great user experience compared to blogs. It’s effortless to tweet and the timeline is consistent. For blogging to improve and thrive, it should have just as straightforward a user experience as social networks wherever possible.

Luckily, RSS already has everything we need for clients to visually distinguish between link posts and regular ones. If the <link> element points to a domain other than the one for the site, it’s probably a link post. If the <link> and site domain match, it’s a full post.

I’ve adopted this in Micro.blog by exposing the domain in the UI itself, at the end of the title or microblog post whenever it’s a link post. If it’s a full post, the link isn’t added. And for either type of post, the timestamp links back to whatever was in the <link>.

Here’s a screenshot from one of Dave Winer’s posts. Note that the link was not in the RSS text. It was added by Micro.blog automatically:

[image:]

All of this boils down to two simple recommendations:

		If you’re a blog author and you’re adding any significant commentary, the RSS or JSON Feed should point back to your site.

		If you’re an RSS client developer, the difference between link posts and full posts should be exposed in the UI.

I believe that adopting these will bring more consistency to blogging. Users won’t need to hover over links, or guess what will happen on a click or tap. It’s a small change that will make reading blogs a little better.

Bloggers using linkblogs are reading web pages and linking to the ones they find interesting. Chris Aldridge thinks there should be more emphasis on the reading part of composing a linkblog post, suggested linkblogs could be renamed "reading pages":

On today’s more advanced web, there’s actually more value in naming it a reading page as it indicates a more proactive interest in the bookmarked content–namely having spent the time, effort, and energy to have actually read the thing being bookmarked.

Linkblogs are essentially a convention for attribution. Even just an author name and link make the web a little better and more resilient to linkrot, because the reference persists even when a linked web page is lost.

Micro.blog has deep support for bookmarks and blogging about books you’ve read. It integrates with IndieBookClub, which is built on the IndieWeb building blocks Microformats and Micropub. Micro.blog also leverages Quotebacks for its “embed” feature to make it easier to quote a microblog post.

Quotebacks were introduced by Tom Critchlow and Toby Shorin in 2020 as a way to bring the ease-of-use of social networks “embed” features to the rest of the web. Introducing Quotebacks, Tom wrote:

The ultimate goal is to encourage and activate a deeper cross-blogger discussion space. To promote diverse voices and encourage networked writing to flourish.

Cross-site discussions is a recurring theme in this book and has multiple facets. There’s making posting easier, with Micropub and more feature-rich platforms. There’s Webmention, for notifying blogs when a reply is posted. And there’s the foundation of HTML and Microformats

Without HTML, we could never have diverse blog formats because a more narrow structure of linking (like the Twitter API) would trend toward centralization and monoculture. Linkblogging and Quotebacks fit perfectly into the vision of a hyperlinked, distributed conversation across the web.

Interview with Om Malik

Once a year we hold a small online conference for the Micro.blog community called Micro Camp. For 2023, as the tech world was grappling with Elon Musk’s chaotic leadership at Twitter and the impact of decentralization with Mastodon’s growing popularity, Om Malik joined us for a keynote conversation about where things are headed.

This is an edited portion of the interview.

Manton: I'll give just a real quick — it's hard to summarize 20-25 years in five seconds — but just real quick for people who aren't familiar. You are a journalist, you covered tech really early, leading up to the dot-com era. You were a founder at GigaOM, you were a partner at True Ventures, and you're a blogger.

Manton: You post photos. I love seeing your photos, great black and white photography, and you write about social media. You've had a way of capturing the moment that we're in, I think, as social networks evolve, as people are more interested in a renewed focus on blogs, and more independent platforms. I'd love to talk to you about that.

Manton: But first, what did I miss in that quick whirlwind description of your last couple of decades?

Om: I think you got it. I think most of my life is dedicated to journalism. I thought blogging was an extension of that idea. That's why I was a very, very early adopter, 2000 time frame, and a big disciple of Dave Winer.

Om: And life is taking me in many directions. I live on the edge. There's nothing wrong with looking at the possibilities of technology and imagining that.

Manton: Yeah. Personally, I loved those early days, following what Dave Winer was up to. I think you used Movable Type and Blogger, and some of those early systems, and I used some of those too.

Manton: I'm curious about those early days of blogging. Is there anything that stands out as you were just trying things out and switching different blogging platforms and that sort of thing?

Om: Yeah. I was hand-coding HTML pages in the early 90s, using whatever tool or text editor. I went on to use HomeSite... I used Dreamweaver, I used FrontPage, and a whole bunch of the apps to create web pages. Essentially, the idea of publishing on the web was what was to me the most important thing.

Om: That's why I find it so strange that people get caught up in the trap of the label. "Hey, this is blogging, this is tweeting, and this is Substack, this is Medium." I think that has been the most confounding part of everything. How did we become, like "I have a Substack." No, instead of saying, "I write, you write."

Om: How do you write? Do you actually say what notebook you're using or what brand you're using when you're writing in your notebook? It is like the insanity of it makes no sense.

Om: The progression for me was as tools became easier, I just adopted the easiest way to publish and the easiest way for people to find me. That's the thing, right? You want, as a writer, people to read you. That's it.

Om: Even if only one person reads you, that's the act of creating. It's complete. You create it in a void, so it's still incomplete, at least for me. For other people, it's very different. For me as a journalist, for me as a writer, the act of creation is going out, touching somebody with what I've written and then the process is complete. Start again, do it again.

Om: And to me, that was it. And I think that blogging was just the simplest, easiest way of doing it. I mean, a blog is a great tool. You know, you feed your stuff into a server and it works. And then Movable Type came and that made things easy. But then, you know, I ended up being in the open source camp and I've always stayed in that camp.

Om: And the reason is, it's not like a religious thing. It's more like I do not want to be beholden to some silo. Again, right now it's become a religious thing. And it's like, for me, it's just there's a reason why the internet exists. It's supposed to be open. It's supposed to be a network of networks. We cannot be confined to just one thing.

Om: And I guess I'm old, like as you said in your intro, you know, 35 years on technology, 27+ years in the internet itself. I think it has made you appreciate the underlying technology and what the internet is all about. So the ethos are still, you know, alive and kicking inside me. I mean, I've dabbled with like, I should do a Medium and I should do a Substack. And something inside me, you know, holds me back.

Manton: Yeah, I think it's interesting to frame it that way of like a tweet or a Substack. I feel like there's a trend with companies they want to sort of own the noun or the verb. And actually when we started Micro.blog, a lot of people asked like, what should we call posts? Should we give them some special gimmicky name? And I always pushed back at that. No, they're just posts. We don't need "tweet". We don't need anything fancy.

Manton: And I wonder, I mean, you were so early on Twitter. You were like literally one of the very first people.

Om: The first tweet, outside of Twitter people.

Manton: Yeah, and so, you know, obviously Twitter has gone through a lot of leadership changes and different things, but at its core, microblogging these short posts, it was about what you just said is like, what's the easiest way we can just kind of get our thoughts out there?

Manton: I guess I wonder how you feel seeing the different changes that have gone on with Twitter, and does that influence how you write on your own blog at all? Or are those kind of separate worlds?

Om: Clearly, both Facebook and Twitter have had an impact on how people publish, the kind of people who publish, and how often they publish. All those things have changed. What used to be blogging has been partitioned in many parts, right? Like blogging used to be about friends and we had like the blogroll and that became like Twitter in a sense, a source for information. And then the post became like Facebook and photography became Instagram.

Om: And it's like a lot of social behavior came from blogging. And I think as all these new platforms have come up, they are being more current, right? They are more equipped for the time we are living in. So Instagram, Facebook, TikTok, Twitter — they are the right ways to publish in the age of the mobile, right? And TikTok was the right way to publish in the age of the front-facing camera. TikTok and Snap.

Om: I think we look at the act of publishing in complete isolation from the network itself, the hardware which is available, and how we the people are actually using real-world technology. And so blogging is everywhere now. It just isn't like in a blog silo.

Om: So how has it influenced me, right? Like the world has become so fast, so off the cuff, so casual. So when you're a blogger, you actually have to take a step back and just say, I can't be doing the things that I was doing earlier. I actually have to take a more thoughtful approach. I cannot compete with the speed of the mobile platforms.

Om: What I publish has to be more considered. All these things become inputs as much as they become outputs. Blogging itself hasn't changed. How we do it, you know, like how we cook a dish is different on a gas stove versus on a charcoal grill. But it's still cooking. So that's exactly how I think about blogging. It's just that you think differently about it.

Manton: Right now, it feels like there's a lot more awareness about where things are going. And I guess, yeah, some people put their photos on Instagram and this other platform and whatever the new thing is, and their blogs.

Manton: But I pulled up one of your old posts where you did talk about the kind of trap you can get in if you only post to the other platforms. You were talking about something in the news and you said, "This is why you need your own little place on the internet. Otherwise you're always tilling someone else's land." You know, you're always helping their ad platform or whatever their business model is and you're not controlling yourself.

Manton: And that is a big kind of philosophy that I have, that the IndieWeb has. And I guess I wonder for photography, for example, do you think people are thinking more about that now? It feels to me like they are, but I don't know.

Om: No. I think somewhere down the line, we stopped thinking about the idea of photography as a mean of creative satisfaction. And the act of creation is what made photography special. Instead, we all became whores to attention. Instagram turned us into people seeking attention. We forgot all about the creating.

Om: And so everything became about the likes and the retweets and the reshares and the comments and the followers, instead of: what happened to the joy of creating the photo?

Om: It doesn't even matter what it looks like. Today I was walking around Central Park and I saw one image, literally, just like walking. And it caught my eye from my phone, just a photograph. I have a big camera in my bag. And at that point, I just saw this image and I had to make it.

Om: I don't think it's like a fine art photograph. It won't win any awards. But for me, that one moment of like, I saw something and I captured it and the joy it brought me, that's what photography is all about.

Om: We have imposed metrics upon the art of creation. I think that is why I don't think, you know, photography is gonna ever be able to move away from the likes of Instagram or something like it. Because now we are all addicted to the metrics on top of photography or on video or on creative products.

Manton: And that's definitely something I hear from people with starting a new blog, they're often miss some of that engagement. And the best bloggers, I think, they post for themselves first, right? They post because just the act of writing something helps clarify their thoughts or they feel good about sharing it. But if two people see it or a hundred people is a secondary thing.

Manton: And it's definitely not a secondary thing on most social networks. In fact, you have, you know, teenagers, especially, I noticed sometimes they'll post a photo and if it doesn't get enough likes right away, you know, they'll take it down, like something's wrong with it or something.

Manton: I don't love that, I guess. All the new social networks that are coming up, Mastodon, Bluesky, you know, some of the social networks, they kind of copy the way Twitter did things, in which case I feel like you're gonna have the same sort of, you know, the same... People will use it the same way if it rewards the same like counts and follower counts and that sort of engagement.

Manton: I don't know if you have any thoughts on that.

Om: I have a lot of thoughts. In my most recent newsletter, I wrote a piece pointing out that Twitter now is the Fox News of social and Bluesky is probably gonna become MSNBC because like all those people who were on Twitter are gonna go there.

Om: And the reality is that, I mean, I'm just making an analogy, not that I'm calling it the Fox News of social. But they're getting there, right? And I think, the idea of what Twitter is and like how it publishes and where it stands in the ecosystem, in a way, we forget that we Web 2.0 people are now essentially entering the internet boomer phase, right?

Om: Like in a way, we are like old... I'm definitely old, I know, but people who were in their mid-20s or they're in their early 20s in 2002, 2003, they're older now. They're 20 years older. Mark Zuckerberg is a middle-aged guy, I'm sorry. Like he's a 40-year-old. I mean, he's not cool. Cool people are somewhere else. Cool people are younger, they're using different platforms.

Om: Any text-based publishing platform like Twitter, like Bluesky, like Mastodon, they are essentially reinventing the wheel. Maybe a better wheel for some community or some kind of people with different persuasions.

Om: The fediverse needs to really go to the next level. It needs to start thinking about how is the next generation going to use the software, right? How are they going to adopt?

Om: None of the old people actually got the idea that the front-facing camera was the most important camera. That's why you sometimes you look at it like, dear Apple, you're spending billions of dollars building the back-facing camera, great. If only you spend more money on the front-facing camera, it will be more effective.

Om: We have to look into the younger generation and how they are thinking about using the web.

Manton: That's really interesting. And I do think some of, sometimes when like the open source world, for example, will build something, they will say, okay, we're going to do Instagram, but more open, federated, whatever. Which is fine. But also it tends to create something that already existed in a different way, versus trying to figure out how, like you said, the next generation is — what kind of tools they need.

Manton: And so it almost feels like we're always catching up because so much innovation feels like it's happening at the big companies.

Om: So in the old days, Microsoft was so big with the OS and with the office suite, right? And Sun Microsystems bought OpenOffice and they started to compete with them, feature for feature, open, lower price. Other companies did the same thing.

Om: And yet Google comes along and says, yeah, this is on the browser. You don't need to install the software. You don't even need an OS, just use the search, all the information is going to come to play. You don't win against like a set standard of using something by hawking the same product, right?

Om: Google for search has become basically preeminent. Bing has failed and Yahoo didn't go anywhere and search is still correlated with Google. So how did you go up against Google? Like you kind of say, oh, that's the way to kind of shift often to use the same, using something very different. And like, it's a new way of finding information, right?

Om: New way of using computers went from Microsoft and then Google in the browser, and then we went from new way of looking for information. It's going to OpenAI, ChatGPT. So you're suddenly start to change how people think about certain things.

Om: Like whether it's Bluesky, whether it's Mastodon, there's a couple of others, but they're doing exactly the same thing. You don't win doing the same thing against somebody who already had 300 million active users, right? Like you may get to like 20 million, 30 million active users, but then what? You're not winning against that.

Om: So if you have to win, you have to think different. Like how would, you know, like a whole new generation of people going to use your product. And the fediverse needs to kind of really sit down and figure it out.

Manton: Yeah, I think that the fediverse certainly has grown so much just in the last handful of months. When I think of like 10 million people on the fediverse, that feels like a lot of people to me, but really compared to the billions on, on, uh, or, you know, hundreds of millions on Twitter. It's still early days.

Manton: I was just reading, there was another rumor this morning, I think about Meta's possible tweet-like service based on Instagram, you know, kind of off of your Instagram profile and whether that would be compatible with Mastodon.

Manton: And it's just, it's fascinating to think if, if Tumblr or Instagram or someone embraced the fediverse, they would immediately become the dominant player. They would just have many, many more millions of people. And what would that do to the existing community?

Om: I think that's a very good point you bring up. So as far as Facebook and doing a Twitter clone and they've tried it before. Even people who are like, you know, the young people don't use Facebook, it's becoming less and less relevant.

Om: I think the only product they have with the younger demographic is relevant to is Instagram and, you know, they're going to take the golden goose. It's only a matter of time because as a company, they don't have a lot, many ideas. Because they don't know how to invent anything new, right? So they're basically keep copying other people. Like they're looking at, oh, we can roll out a Twitter-like interface and see what happens.

Om: I think if younger people, if you need to get on to like the next thing, that's not Facebook and that's not Twitter. I mean, you know, Elon Musk is a 50+ year old guy. He doesn't have bright new ideas on how young people do social.

	

	
	Part 5: Decentralization

“To bring in someone from Berkeley, I had to change chairs to another terminal. I wished I could connect someone at MIT directly with someone at Berkeley. Out of that came the idea: Why not have one terminal that connects with all of them?” — Bob Taylor

ARPANET was a government-funded network started in 1969 to connect government and university sites across the United States, and the precursor to the internet. Initially it was just a few nodes, from the University of Utah to research centers in California.

[image:]

Expanded in the 1970s and 1980s, ARPANET adopted the TCP/IP protocol used today and allowed for networks within the larger ARPANET, first spanning to Hawaii and Europe, and then everywhere. By the early 1990s, even before the invention of the web, file-sharing protocols like FTP and systems like Usenet were in widespread use.

And because sending data between networks was still slow compared to a file transfer on the local network, it was common to mirror important files between locations so that there would be extra copies closer to whoever was downloading them. Students could access the files they needed quickly on the campus network instead of reaching across the internet to other servers.

Long-time Apple developer James Thompson was on Jeff Veen's podcast Presentable, episode 78, looking back on what it was like distributing Mac shareware in the early 1990s:

We uploaded software to this thing called the Info-Mac Archive. You emailed a copy of your software to it, and then it got replicated across the internet. So there was an Info-Mac Archive mirror in... Usually most of the major universities around the world would host one, and some of the companies and things. And it meant that there was somewhere close to you that you could download your software from.

The scope of today's internet by comparison is so massive it is hard to grasp fully. Instead of a few servers in a university basement, a single data center might hold thousands of servers.

While the data for monolithic platforms like Facebook is spread across the globe using content-delivery networks, putting photos and other common downloads closer to users, the data centers are controlled entirely by that platform. The early Info-Mac Archive servers were much more open, distributing control over each mirror to the local operators so they could make the best decisions for their local users, or anyone connecting from the internet.

The Usenet system was transparent and open. Modern content-delivery networks are opaque and keep all the power with the platform provider.

Data centers are still getting bigger. Martha Harbison writes for The New York Times about "hyper scale" data centers:

Hyperscale data centers (each at least 100,000 square feet in size) run the internet, and they’re growing like gangbusters, both in number and size. A year ago, there were 449 hyperscale centers in the world; today there are 504, with the biggest topping out at millions of square feet. A conservative estimate for their total footprint is 125 million square feet, roughly the size of 2,170 football fields. One square yard of one of those “football fields” holds 1 petabyte of data: 250,000 DVDs worth.

It would be worrisome if all content on the web was stored in a single massive, centralized data center, but despite how big Amazon Web Services is getting, there isn't any risk of that happening. The physical map of the web — where servers are located, and how they're distributed — isn't something most of us have control over anyway.

[image:]

The conceptual map of the web is different. We can wipe away the physical map, leaving dots on the map for domain names instead of physical servers. This is something that is directly shaped by our choices. If too many people use silos, the web becomes more concentrated around those silos.

[image:]

If more people use domain names, the web naturally becomes more distributed.

[image:]

Federation is a middle-ground that starts to split centralized servers — a step on the way to full distribution. Instead of everyone's content living on a large silo, smaller groups of people can share a server. Multiple servers can talk to each other.

There are also social networks that push the distribution even further, to more of a peer-to-peer model like Planetary, based on Scuttlebutt:

…it works by not one company or database holding all the information, but it’s spread out and held by all your friends, and each of our computers.

Nostr likewise has no centralized server, instead relying on a series of relay servers. Posts are copied to multiple servers, and clients will sync up with whatever servers they are configured to connect to. As long as your post is still stored on at least one relay server, it can be found and available to followers.

Nostr uses WebSockets, a protocol built on top of HTTP for web clients to have a persistent connection to servers, allowing them to get real-time notifications when a new post appears without occasionally polling the server.

But Scuttlebutt and Nostr are a bit on the fringe of social networks. New, fully distributed protocols are hard for people to wrap their head around. The decentralized project that has managed to wrap all the right pieces together is Mastodon.

Mastodon is the most popular decentralized social network. In a way, it's not unlike those early Usenet systems of mirroring files. When you post on Mastodon, your post is copied to other Mastodon instances so that it's available to followers on other instances. Mastodon is powered by the ActivityPub protocol that is used to communicate between Mastodon servers.

There has been so much traction with Mastodon and ActivityPub that in the coming years we should expect even much larger platforms to adopt it. Flipboard and Meta’s Threads both started experimenting with ActivityPub support in late 2023.

It's okay to have some number of centralized platforms, although for indie microblogging we should always prefer small platforms. Micro.blog itself mixes centralized elements — a single place to start your blog and follow blogs in a timeline — with the inherent distribution of domain names. It then layers on federation by being compatible with Mastodon.

Notifications

“My goal isn't to get the bits to you as fast as possible while you wait for them, but to have the bits arrive before you even know they're there.” — Dave Winer

I like the term microblogging because it has “blog” in it. With blogging comes some assumptions: that you’re posting to a site you control, that it’s easy but a little formal, so that you invest time into it, putting more into your posts. When you put some thought into your writing, because it’s your name and your site behind the words, you’re less likely to make personal attacks on others.

Not everyone sees “microblog” with a positive connotation. Microblogging can also be more ephemeral, firing off quick posts like chatting. In an interview with Recode Media in September 2018, Twitter CEO Jack Dorsey described wanting to distance his platform from blogging:

One of the descriptions and labels that we had in the past that I always despised was microblogging.

Twitter has highlighted this difference whenever they can. They’ve trademarked the word "tweet". They’ve evolved their app UI to encourage conversations. They've emphasized live breaking news and hot takes.

The Twitter founders had not always agreed that it should be a messaging platform. In the book Hatching Twitter, author Nick Bilton framed the early debate between Evan Williams and Jack Dorsey. The co-founders were impressed with how useful Twitter was to communicate with friends after an earthquake in 2006:

For Ev it was another clue in a theory he was developing about Twitter's role as a way to share news, not just status—Twitter as a communication network, not just a social network. He told Jack about the concept of Twitter as a news network, but Jack disagreed, instead seeing the earthquake tweets as an example of the speed of Twitter.

This speed of getting tweets to your followers was a perfect complement to the ease of use in the tweeting UI. A year later during the SXSW Interactive festival in Austin, Twitter was everywhere.

But by 2008, the technology behind Twitter seemed to be falling over. The user base was thousands of times what it had been at the big rollout at SXSW a few years earlier. Twitter’s original architecture hadn’t been designed for this kind of growth.

The timeline in a social network like Twitter presents a unique problem for scaling. When a new tweet is posted, everyone following that user should see the tweet in their timeline. From a programming standpoint, there are a couple ways to solve this:

		A relational database with tables for users, tweets, and the user following relationships. To build the timeline, you can join between the tables. This is fine for a small data set, but could be very slow when someone is following hundreds or thousands of users.

		A special database that is very good at storing lists of items, with data sets that represent each timeline for every user. When someone tweets, that tweet is effectively copied into the timeline of anyone who follows them. This makes retrieving the timeline very fast because all the data is pre-cached.

This process of sending tweets to everyone who needs them is called “fan out”, and it represented a redesign for Twitter's backend. Over years, Twitter worked to split their monolithic app into separate systems, and they used in-memory databases like Memcache and Redis that were better well-suited to addressing Twitter's performance issues.

Twitter eventually did get a handle on scaling. Twitter today is fast and reliable, even despite Elon Musk’s cost-cutting. But what of independent blogs? Polling for new posts across thousands or millions of blogs is difficult to scale. How do we get this same instant delivery of posts but across the whole web?

Long before Twitter was created, Dave Winer was searching for similar answers. He wasn’t working on a platform like Twitter. In 2001 he was building tools that let him blog more easily, working in his favorite writing environment, the outliner. The goal was to get real-time notifications of changes to documents:

Now it's possible, using the information in an RSS channel, to request that a centralized coordinator, a "cloud", send notification that a channel has changed. Either side of this conversation can use either XML-RPC or SOAP to communicate.

Dave continued:

Most aggregators scan for changes once an hour, but in some situations we want to know immediately when a channel has changed. For example, we include RSS Boxes on many of our sites. When an editor routes a item to a box, we want the news to be displayed immediately, but we don't want to read the RSS channel on every hit. Notification makes it possible to always be current yet conserve bandwidth and server cycles.

That effort was rebooted in 2009 as rssCloud. But rssCloud was still based on XML-RPC, which was falling out of favor, and RSS itself saw little innovation during this period.

Around the same time, another group came together to develop PubSubHubbub. Short for "publish and subscribe" (with a hub), the name also translates to the clever acronym "PuSH".

Julien Genestoux was a co-author of the PubSubHubbub specification and founder of Superfeedr, itself a hub supporting publish and subscribe. On the Superfeedr blog, Julien wrote that because social networks and blogs already had feeds that represented a user's stream of activities, they could be connected via PubSubHubbub to form more distributed social networks:

The next step is to make these feeds “real-time” so that the consuming applications shouldn’t need to poll thousands of feeds or services. To consume my friends information, I shouldn’t even need to be part of the network on which they publish. PubSubHubbub enables that.

There were moments when it appeared that PubSubHubbub would be widely supported. WordPress.com supported both PubSubHubbub and rssCloud. Superfeedr also provided the service for Tumblr and Posterous. But the largest social networks were still based on private APIs, and in fact Twitter would start to phase out their real-time subscription API, reserving it for enterprise customers.

Google Reader would soon shut down. Everyone was too distracted with social networks, JSON, and mobile apps. It wasn’t the right time for real-time notifications for blog posts at web scale.

Mastodon

“We need something that’ll work forever.” — Eugen Rochko

Eugen Rochko rolled out a release of the Mastodon source code quietly in March 2016. He experimented with new features, often things he wanted himself, and it evolved quickly. From the beginning it was kind of a patchwork of APIs. Many of the APIs weren’t new, but they had never been put together this way, with a polished, Twitter-like UI. One major piece was replaced early on, moving from OStatus to the ActivityPub API that we’ll cover in an upcoming chapter.

Mastodon’s strength was as a federated system. There are many instances, each like a mini-Twitter. Instances can talk to each other, allowing replies to be sent to users between instances in a similar way to email sent between email servers.

New instances of Mastodon began to appear. The main instance Mastodon.social steadily grew. As I was launching the Kickstarter campaign for Micro.blog at the beginning of 2017, I received a couple questions about Mastodon as people wondered how Micro.blog might be different.

Then in March of 2017, Mastodon exploded. It spread quickly in part fueled by Twitter changes such as redesigning how replies were displayed.

Writing around that time, Eugen contrasted Mastodon’s approach with Twitter’s in a blog post that fit perfectly into the current pushback against Twitter:

The federated nature of the network also has implications on behaviour. Different instances, owned by different entities, will have different rules and moderation policies. This gives the power to shape smaller, independent, yet integrated communities back to the people.

Mastodon has blocking and muting similar to Twitter, with small differences. These are mostly surface-level changes. More fundamentally, splitting the network over many instances allows each to take a more active role in moderation. User reporting may also be more likely to be addressed on instances that are well maintained.

Sarah Jeong, who had written about the frustration with Twitter's reply changes, wrote another article for Vice's Motherboard about Mastodon that underscored the value in having separate instances that were not all controlled as a single, centralized platform:

But Mastodon's norms aren't set in stone. And mastodon.social is only one instance in a larger federation. There could be an instance with the fast-paced and hard-edged humor I've come to value from Twitter. There could be an instance propagated with news junkies and commentariat.

People were also pulled in because of the perception that Twitter wasn't doing anything about hate and harassment. If App.net had come along during the backslash against Twitter's increasingly tight hold on what developers could build, Mastodon was released after the narrative around harassment was clearly defined.

As marketing for Mastodon, its instance-based messaging resonated with people who didn't think Twitter's rules were working, or enforced. Wired covered Mastodon's rise in 2017:

Mastodon has created a diverse yet welcoming online environment by doing exactly what Twitter won’t: letting its community make the rules. The platform consists of various user-created networks, called instances, each of which determines its own laws.

Since then, there have been several waves of new users embracing Mastodon. It has grown to over 2 million users across thousands of instances.

Many people started on the Mastodon.social instance:

[image:]

Instances can talk to each other, and a user on one instance can follow a user on another instance. Here are some I picked out from the thousands that exist. Each instance has its own hostname, which is used to form a full username to find someone in the Mastodon federated universe, or "fediverse":

[image:]

A full username is constructed with the username on a given instance — which only has to be unique on that one instance — combined with the instance hostname. If my username on Mastodon.social is manton, someone can send me replies across the fediverse using @manton@mastodon.social.

Posting to Mastodon looks a lot like posting to Twitter and other social networks:

[image:]

That post is delivered to your followers. It also shows up in the "local" timeline of your Mastodon instance. Other users on the same instance can discover your post that way and choose to follow you.

You may have followers on other instances as well. You don't need an account on those instances. When someone on another instance follows you, your post is sent to that instance so they can see it. It also shows up in the "federated" timeline on that instance, which is a collection of all the posts that instance has seen from the larger fediverse.

For many people getting started with Mastodon, they registered on Mastodon.social, so it quickly became a very large instance hosting most people. Some of the advantages of federation are diminished if users are not spread more evenly across instances, though.

In a 2-year anniversary post, Eugen addressed why so many people are concentrated on a small number of instances:

The 3 largest servers combined host 52% of the network’s users, the 25 largest servers host 77% of all users. This is natural as the largest servers are more known and therefore attract a lot of new people. However, for many people who stick around, they act as gateways, wherein once they learn more about Mastodon, they switch to a different, usually smaller server.

Switching to a smaller instance allows users to find a community that fits their needs better. There can be different community guidelines for each instance.

Instances aren’t usually supported by ads or paid subscriptions. Most Mastodon administrators are donating their time, in some cases supported by donations from members. Crowdfunding can be a useful tool to support running an instance.

The site Run Your Own Social documents how to get started running a small social network based on Mastodon, and why:

The main reason to run a small social network site is that you can create an online environment tailored to the needs of your community in a way that a big corporation like Facebook or Twitter never could.

When an instance has wildly different guidelines in what content they allow, it can create forks in the Mastodon community. Because Mastodon is open source, social network Gab based the new version of their app on Mastodon. Gab was a haven for right-wing topics and hate speech, so Gab was quickly shut off from many other popular instances, breaking federation while still letting Gab function on its own.

IndieWeb co-founders Tantek Çelik and Aaron Parecki talked in the interview in Part 3 about how the idea for the first IndieWebCamp came after what they saw at the Federated Social Web Summit in 2010. Another attendee, Austin King, blogged his notes for other potential standards discussed at the event, from PubSubHubbub to WebFinger, Salmon, and ActivityStreams.

These latter standards would form the initial foundation for Mastodon. Austin wrote in his post about the complicated requirements of the Salmon protocol:

The protocol has been simplified as much as possible, but many technologies have been doomed to obscurity due to the propeller head nature of properly implementing various schemes properly.

Evan Prodromou, who had helped organize Federated Social Web Summit, also built Identi.ca, a microblogging service based on the StatusNet technology whose development he had led. StatusNet would become OStatus, also used in software such as GNU Social, which powered early instances.

OStatus was a suite of protocols, bundling together APIs for notifications, replies, and user profile discovery. As Mastodon was taking off, the Mastodon developer community retooled part of the foundation for Mastodon to replace OStatus with a new API, ActivityPub.

ActivityPub is built on ActivityStream, which outlines keywords that can be used for the social web. Things like an actor (user), note, or reply. The format uses JSON-LD.

Mastodon also had a REST API for building clients. Mastodon on the web was easier for newcomers who were fleeing Twitter to understand, and having the API meant native apps could be built, something users were used to having on Twitter.

The history is a bit tangled, with several forks along the way from Identi.ca, Mastodon, and privacy-focused alternatives to Facebook like Diaspora. Once Mastodon had established itself as the overwhelming "winner" of the fediverse, with more people contributing to standards such as ActivityPub, the fediverse became a stable platform on which other Mastodon-compatible services were built.

Pixelfed

“My good opinion once lost is lost forever.” — Pride and Prejudice

There was a growing backlash against Twitter among Mastodon users who felt they had found their new social network on the internet. Users coined the derogatory term Birdsite for Twitter, determined to never return. Mastodon’s UI was so similar to Twitter that it was a natural next social network, even if it only partially fulfilled the goals of the IndieWeb.

Mastodon has inspired developers to create additional new services that can be more open versions of popular platforms. Bookwyrm is a book sharing site with features similar to Goodreads. PeerTube is a video sharing site. Pixelfed is a photo sharing site based heavily on Instagram's UI, but compatible with Mastodon.

Pixelfed developer Daniel Sup first heard about Mastodon in 2016. He was coming from Statusnet, an early federated platform known for its technical implementation if not necessarily its UI, and Daniel found Mastodon’s UI a refreshing change.

I interviewed Daniel Sup over email for this book and he described how the development of Pixelfed started:

Around 2016 I started working on a GNU/Social successor using the Laravel framework. I picked it back up in early 2018 and made a lot of progress for a few months until I started implementing federation support. That is when I realized I made a mistake with the database schema, it would require a significant refactor.

At that time I had discovered Pleroma and decided to research other social networks, two weeks later I shared the first screenshot of Pixelfed.

Like Mastodon, Pixelfed is open source, so developers can run their own versions of it. The original instance, pixelfed.social, stopped accepting registrations after about 10,000 users. Developer @dansup posted about the news in May 2019:

It was a tough decision to make, I think it will pay off in the long run 😉

The goal was to accelerate the adoption of other instances and further underscore the need for working federation between Pixelfed and Mastodon. Because most people's instinct is to join the "first" instance, by default that instance will become much larger than any other. This is what has happened with Mastodon.social. By forcing new users to find a new instance, it spreads the load around, creating smaller communities.

Sup also told me about how well he think the decision was working:

I'd say it worked out as expected, we are seeing overall growth across instances even as pixelfed.social active users declines. I've seen a few single user instances, once our invite system is shipped I expect we'll see more closed group instances.

After the interview, Pixelfed has re-opened user registrations on the original instance. There has been a similar shift in thinking with the Mastodon mobile app UI to point people first to the flagship mastodon.social, to make the initial registration experience easier to understand.

Pixelfed looks remarkably similar to Instagram. Where Instagram is still primarily used from mobile phones, though, Pixelfed started as a web interface. It supports posting from the web, including applying filters to photos:

[image:]

In early 2020, Pixelfed also added a new featured called Restricted Mode that makes a personal instance more suitable to be privately shared with family and friends:

Restricted Mode will allow you to require authentication for every page and disable federation support with a single command.

By disconnecting your Pixelfed instance from the larger network of Pixelfed and Mastodon instances, you can use it like a personal version of Instagram. This again gets us back to smaller social networks, easing the transition away from ad-supported silos. It also may be appealing to Facebook users who want a private way to share photos, which has not been a major focus of either Micro.blog or the IndieWeb.

Sup would also hang out in the IndieWeb chat, and I asked him about the opportunity to bring more of the IndieWeb principles and formats to ActivityPub-based apps like Mastodon and Pixelfed. “I believe adding IndieWeb principles and specs like MicroPub to Pixelfed aligns with our long term goals,” he told me.

Large platforms, even if they are backed by open standards, should be avoided if your identity is inseparable from that silo's domain name. Be careful that you aren't quitting one silo (Instagram) only to join another silo (a large Pixelfed instance).

Rather than looking for "another Twitter" or "another Instagram", we should look at the plumbing behind Mastodon and Pixelfed and support that with indie blogs. That plumbing is mostly referred to as ActivityPub, although Mastodon is really a blend of multiple APIs like WebFinger, ActivityPub, Atom feeds, and even some IndieWeb formats.

ActivityPub

“Future standards — including vocabularies for social applications, activity streams, embedded experiences and in-context actions, and protocols to federate social information such as status updates — will address use cases that range from social business applications, to cross-organization federation, to greater user control over personal data.” — Launch press release of the W3C Social Web Working Group

Between 2014 and 2018, the W3C Social Web Working Group coordinated work drafting several different potential web standards. It was a broad charter, covering IndieWeb-friendly formats like Micropub and Webmention, as well as some of the formats that would form the foundation of Mastodon.

When we talk about ActivityPub, we usually mean not just the ActivityPub spec but a suite of related standards.

WebFinger

WebFinger is used in Mastodon, though it’s not strictly part of ActivityPub itself. With users spread out across multiple Mastodon instances, there needed to be a way to look up a user on another instance. WebFinger was used in earlier federated networks like StatusNet and Diaspora, and it is also used in Mastodon.

Remember that Mastodon usernames look like email addresses. WebFinger was designed to accommodate email addresses. From the WebFinger specification:

WebFinger discovers information for a URI that might not be usable as a locator otherwise, such as account or email URIs.

In many IndieWeb protocols, to query information you often first look for link tags in the HTML for a user's blog. For example, rel="micropub" would point to the Micropub API endpoint for posting, which could live on a different server. WebFinger is not like that. With WebFinger, there is a standard URL under the path /.well-known that is provided by every Mastodon instance.

To look up a user with WebFinger, you construct a resource parameter with an acct: URI that includes the Mastodon username. The : and @ characters will need to be encoded.

GET /.well-known/webfinger?resource=acct:manton@mastodon.social
Host: mastodon.social

There is no centralized directory of Mastodon usernames. This request should be sent to the hostname used in the Mastodon username.

So for a username like manton@mastodon.social, you should make a WebFinger request to "mastodon.social". For aaronpk@aaronparecki.com, it would be a connection to "aaronparecki.com". (Most Mastodon users share an instance with other users, but some people run a single-user instance with their own domain name.)

The response is JSON, including data such as the URI for the account and links to the user's profile page and ActivityPub endpoint. A portion of the JSON looks like this:

{
 "links": [
{
 "href": "https://mastodon.social/@manton",
 "type": "text/html",
 "rel": "http://webfinger.net/rel/profile-page"
},
{
 "href": "https://mastodon.social/users/manton",
 "type": "application/activity+json",
 "rel": "self"
}
],
 "subject": "acct:manton@mastodon.social"
}

The most important field is the link where the value of rel is "self". This is the ActivityPub "actor" URL, a unique identifier for referring to this user account.

HTTP signatures

In addition to WebFinger for username lookups, another underspecified aspect of ActivityPub that Mastodon filled in was signing HTTP requests. In fact, there is no mention of this at all in the ActivityPub spec. The authors of the spec knew more work would need to be done here, so they published a separate W3C best practices report with a loose proposal for how to take the next step:

Server to server federation is authenticated using HTTP Signatures in conjunction with the signing key from the actor's publicKey field. The keyId should link to the actor so that the publicKey field can be retrieved. At minimum, the digest field should be included in the set of headers being signed.

HTTP signatures effectively add new required HTTP headers to verify if the request is arriving as it appears to be, not intercepted and modified in transit. It combines the date, request path, and other fields, cryptographically signing it so that it can be verified on the other side.

Mastodon requires HTTP signatures for any POSTs to the inbox. Additionally, Mastodon can optionally be configured to require HTTP signatures for all requests, even just looking up the user’s profile.

ActivityStreams

ActivityPub and ActivityStreams are intertwined. ActivityPub describes the protocol for applications to talk to each other. ActivityStreams describes the payload — common types of data that can be sent between applications.

Each request will have an “activity” that tells us the type of a request. For a social network, these activities roughly map to interactions the user takes. Following a user is a “follow” activity, sending a new post is a “create” activity, and so on.

Activities usually have an “actor” — an identifier for the user sending the request — and an “object” — the actual important bits for that type of activity.

The basic JSON structure for creating a new blog post might look like this:

{
 "object": {
 "type": "Note",
 "content": "Hello..."
 },
 "type": "Create",
 "id": "https://micro.blog/4533FDCDF869351762C5",
 "actor": "https://manton.org/activitypub/manton"
}

There are a handful of activities that every server compatible with Mastodon should support. Some platforms also add their own activities or object types and document them.

Bookwyrm is a Goodreads-inspired project for sharing what books you’re reading, similar to Micro.blog’s own bookshelves and reading goals features. In addition to the “Note” type for microblog posts, they’ve added “review” for a book review and “quotation” for a highlight in a book.

Wherever possible, however, we should use standard types from ActivityStreams. ActivityPub is a complicated protocol to support, with subtle variations between different server implementations. It’s more likely that servers will be compatible with each other if we minimize the number of request types we need to support.

And because we can include HTML in posts created with ActivityPub, we get all the flexibility of inline images and links. There is no need to invent new formats when HTML is already flexible and widely understood. The more we use HTML, the more our platforms can natively build on top of the web instead of alongside it.

The inbox

Most requests in Mastodon are sent to a user’s inbox. This is an endpoint that receives follow requests, new posts from other users you might be following, and even notifications when a post is removed, so that an instance can update its own copy of posts and user accounts.

To discover the inbox and other URLs for a user, we query the actor URL found from WebFinger:

GET /users/manton
Host: mastodon.social
Accept: application/activity+json

Mastodon uses HTTP content negotiation. The “Accept” header needs to be sent to indicate what kind of response you want to receive. It is usually set to “application/activity+json” (ActivityPub and ActivityStreams) or “application/ld+json” (JSON LD).

Mastodon instances and other platforms that implement ActivityPub will need to store data about the user. Requests to the inbox are signed, and the public key fields can be used to verify requests.

The full profile response from Mastodon is quite long. Here’s a partial response of the key JSON fields:

{
 "preferredUsername": "manton",
 "inbox": "https://mastodon.social/users/manton/inbox",
 "id": "https://mastodon.social/users/manton",
 "followers": "https://mastodon.social/users/manton/followers",
 "type": "Person",
 "publicKey": {
	...
 },
 "outbox": "https://mastodon.social/users/manton/outbox",
 "icon": {
 "url": "https://files.mastodon.social/accounts/avatars/000/019/818/original/85d071e6a7864589.jpg",
 "type": "Image",
 "mediaType": "image/jpeg"
 },
 "name": "Manton Reece",
 "url": "https://mastodon.social/@manton"
}

To send a new blog post to a user’s inbox, send an HTTP POST:

POST /users/manton/inbox
Host: mastodon.social
Content-Type: application/activity+json
Accept: application/activity+json

The JSON body in the request will look something like this:

{
 "@context": "https://www.w3.org/ns/activitystreams",
 "object": {
 "url": "https://www.manton.org/2018/10/15/not-just-for.html",
 "attributedTo": "https://manton.org/activitypub/manton",
 "content": "Not just for bloggers",
 "to": [
 "https://www.w3.org/ns/activitystreams#Public",
 "https://mastodon.cloud/users/manton_test"
],
 "published": "2018-10-18T14:02:14+00:00",
 "type": "Note",
 "id": "http://manton.micro.blog/2018/10/15/not-just-for.html",
 "cc": [
 "https://micro.blog/activitypub/manton/followers"
]
 },
 "type": "Create",
 "id": "https://micro.blog/4533FDCDF869351762C5",
 "actor": "https://manton.org/activitypub/manton"
}

You will see the “@context” field across ActivityPub requests and responses. This is part of the JSON-LD standard, which ActivityStreams is based on. Most ActivityPub implementations just use a regular JSON parser, though, not one specific to handling JSON-LD, so no special processing is usually necessary.

The “type” value comes from ActivityStreams 2.0. In addition to creating a post, there are verbs for following users, liking a post, and other actions you’d expect in a social network like Mastodon.

To follow a user, a request of type “Follow” is sent. The “actor” is the user sending the follow request. The “object” is the actor URL for the account to follow.

{
 "@context": "https://www.w3.org/ns/activitystreams",
 "type": "Follow",
 "id": "...",
 "actor": "manton@mastodon.social",
 "object": "news@micro.blog"
}

Accounts on Mastodon can be configured to either automatically accept new followers, or require the user to manually approve the follow request. In either case, an ActivityPub server will reply to the follow request to accept or deny it.

To accept a follow, a request with type “Accept” is sent, with a reference to the follow:

{
 "@context": "https://www.w3.org/ns/activitystreams",
 "type": "Accept",
 "id": "...",
 "actor": "news@micro.blog",
 "object": {
 "type": "Follow",
 "id": "...",
 "actor": "manton@mastodon.social",
 "object": "news@micro.blog"
 }
}

Note that the original follow request is included inside the acceptance. ActivityPub servers will usually need to keep some information about these activities so they can track them between requests.

Attachments

Micro.blog posts are just blog posts. That means they use HTML for linking and inline photos. Mastodon posts are more like tweets: instead of inline tags for photos, ActivityPub has a separate attachment field with any images included in the post.

"attachment": [
	{
	 "type": "Document",
	 "mediaType": "image/jpeg",
	 "url": "https://micro.blog/photos/..."
	},
	{
	 "type": "Document",
	 "mediaType": "image/jpeg",
	 "url": "https://micro.blog/photos/..."
	}
]

The ActivityStreams 2.0 spec outlines the fields for many of these types like attachments. There is some variance between implementations. For example, Mastodon uses type “Document” for images, while Threads uses type “Image”.

Moving instances

While many of the fediverse developer community developed separately from the IndieWeb community, they both share some common principles around the open web, including account portability. If we have many thousands of Mastodon servers, users are going to want to be able to migrate between instances. This is a core selling point of Mastodon, as outlined on the Mastodon servers page:

Find a different server you'd prefer? With Mastodon, you can easily move your profile to a different server at any time without losing any followers.

Mastodon’s account migration is built on two parts of ActivityPub:

		Including aliases in the actor profile JSON to specify a mapping between old and new accounts.

		Using the “Move” activity to notify followers to re-follow the new account.

The Mastodon documentation says that aliases should be set up on both sides of the migration, but this does not seem to be required. In my testing, an alias is only needed on the new instance.

Micro.blog has implemented account migration following Mastodon’s example.

Because I wanted to move to Micro.blog, I added an alias in Micro.blog that references one of my old accounts: @manton@mastodon.social. You can find this in Micro.blog under Account → View Mastodon Details → Aliases.

Aliases are added to the ActivityPub profile information in the field alsoKnownAs. Here's a snippet of my info:

{
 "preferredUsername": "manton",
 "name": "Manton Reece",
 "alsoKnownAs": [
 "https://mastodon.social/users/manton"
],
 …
}

The next step is to sign into the old Mastodon instance and tell it to move to Micro.blog. Mastodon will take a few actions when this starts:

		It will verify that there's an alias on Micro.blog, confirming that both accounts are yours.

		It will lock your Mastodon account, updating the profile to tell people about the new Mastodon instance. (In my case, actually powered by Micro.blog.)

		It will send a "Move" activity to all the instances for all your followers, telling them to update their references to point to your new username.

The "Move" activity is sent to each follower's inbox just like other activities such as "Create". It includes a field target for the new instance that the user is moving to:

{
 "actor": "https://mastodon.social/users/manton",
 "target": "https://manton.org/activitypub/manton",
 …
}

Mastodon won't add alsoKnownAs to your ActivityPub profile on the old instance, but instead it will add a similar field named movedTo with the new actor URL:

{
 "preferredUsername": "manton",
 "name": "Manton Reece",
 "movedTo": "https://manton.org/activitypub/manton",
 …
}

Updating your followers can take quite a while — likely hours and possibly over a day, if you have hundreds or thousands of followers. It makes sense that this is a low priority background task. You can watch the progress as Mastodon essentially decrements your follower count on the old instance.

As 2023 was winding down, with a year of turmoil at Twitter, ActivityPub was well positioned to spread to more platforms. David Pierce captured this momentum in an article at The Verge, making the case for the fediverse:

Forget the hand-wavy protocol stuff for a second — one of the best things about embracing ActivityPub is that it sticks a crowbar into a single Voltron-ic product like Facebook or Twitter or Snapchat and pries it apart into its component pieces, each one ripe for innovation and new ideas.

Meta’s Threads started testing ActivityPub. Announced directly from Mark Zuckerberg:

Starting a test where posts from Threads accounts will be available on Mastodon and other services that use the ActivityPub protocol. Making Threads interoperable will give people more choice over how they interact and it will help content reach more people. I'm pretty optimistic about this.

Adam Mosseri, the head of Instagram and Threads, also echoed this point in more detail on subsequent posts and video updates. The rollout was going to take a little while, but Threads had a clear path for adopting more and more of ActivityPub. Adam said:

This work is taking longer than we thought given our safety work, given our compliance work, and given all the scrutiny on our company. But over 2024 we’re going to be adding the ability to post from Threads to these other servers. We’re going to eventually also support the ability to show replies in Threads natively, and eventually allow you to even follow accounts on those other servers from the Threads app itself.

Flipboard also embraced ActivityPub, starting by spinning up their own Mastodon instance and then working to build ActivityPub directly into the core Flipboard platform. Flipboard co-founder Mike McCue started a podcast called Dot Social about the fediverse, and wrote on Medium about the potential for Flipboard:

This is the single largest expansion of the Flipboard ecosystem since we launched as a social magazine in 2010. I’m incredibly excited about how federation will benefit everyone on Flipboard and in the Fediverse. More importantly, I hope we can serve as inspiration for other apps and services contemplating the Fediverse.

ActivityPub was a new opportunity for Flipboard to expand. Twitter was stumbling through a series of ill-received changes (including shutting down the Twitter API, which hurt Flipboard directly) at the same time that ActivityPub was growing. Flipboard got new momentum by coming along with ActivityPub for the next path forward for the social web.

ActivityPub is another layer on top of the web. It will always require custom software, either Mastodon itself or something compatible with ActivityPub, like Micro.blog, Threads, and Flipboard. Basing your identity instead on blogs means you can use anything that can generate HTML, from WordPress to Micro.blog to a static site, hosted anywhere.

Your blog

”For years, I’ve been explaining to people that daily blogging is an extraordinarily useful habit. Even if no one reads your blog, the act of writing it is clarifying, motivating and (eventually) fun.” — Seth Godin

The popularity of Mastodon and ActivityPub encouraged many people who didn't want to join a large instance like Mastodon.social to spring up their own instance, just for themselves and friends. Niche instances have a more usable "local" timeline, where you can see just posts from the small number of users on that instance.

The Portland-based conference XOXO started their own Mastodon instance XOXO.zone just for conference attendees. Six Colors founder Jason Snell started his own instance Zeppelin.flights just for himself and friends in the Apple community.

Some of these smaller instances will become great communities. It's an important part of finding our way out of the mess of massive social networks to embrace smaller social networks, so smaller Mastodon instances should be encouraged. But some instances are just experiments.

I noticed one day that the Zeppelin.flights instance that Jason Snell used to run was no longer online and I asked him why he had shut it down. He told me it was simply that people stopped using it. And because he was paying a hosting company to run the server, he didn't want to pay for it anymore.

I think that is common. You sometimes see Mastodon instances simply go away, or people move to a new Mastodon instance, which changes their username. The fediverse feels a little fragile because most Mastodon users are using someone's instance without thinking much about their long-term identity on the web.

Later, as the chaos with Elon’s takeover of Twitter was causing users to move to Mastodon, Jason brought Zeppelin.flights back online. More people were ready to use it, and he could jump back into the fediverse with the same domain name. That’s the value of owning your own space.

Mastodon prioritizes a federated network. Micro.blog takes a hybrid approach: distributed where it’s most important, content on your own site at your own domain name, but centralized where we can make it easier to use.

People are always looking for a Twitter alternative. When they think they might have finally found a viable one, they get excited.

It's useful to go back to why I'm working on Micro.blog. In my Kickstarter video, I said:

I know that clones of Twitter and Facebook have come and gone, but something was missing before. And today's social networks have new problems. Hate and harassment are too common. Fake news and lies spread too easily. The time is right for a new approach.

Let's break that down. It's specifically three things:

		Twitter clones usually don't last. The path is always the same: usage spikes at the beginning, an interesting community forms if you're lucky, and then it fades away. For Mastodon not to follow the same course, there has to be something different about it.

		Twitter has new harassment problems. Massive, centralized social networks are broken. Mastodon's distributed nature presents an opportunity and challenge for solving this. The capability to disconnect entire instances will likely split the federation into multiple communities.

		Twitter popularity is a double-edged sword. Retweets amplify posts to a larger audience, which is often a good thing but sometimes discourages more thoughtful posts. Mastodon is mostly a feature-to-feature clone of Twitter. While Mastodon purposefully avoided quoted tweets, it still has favorites, reblogs, trends, and some of the popularity contest ramifications.

Micro.blog's approach instead starts with blogs. Rather than trying to recreate Twitter with a more open or distributed platform, the idea is to build Twitter-like functionality on top of existing blog platforms like WordPress. You don't need to run your own instance of Micro.blog.

With Mastodon, you usually have of a mix of Twitter-like instances based on ActivityPub, each one holding many users, often thousands. Here is a sample of federated instances:

[image:]

But what I really want is just me. Instead of multi-user instances, a more distributed web should contain many solo instances, each a blog for just one person with their own domain name:

[image:]

Remember, most Twitter clones fail. With the platform based on blogs, the worst case if Micro.blog doesn't work out is that you've still got your own blog! Instead of being left with nothing, you have all your microblog posts, domain name, and design. You can still cross-post to other social networks and move on to the next thing without starting over.

This is how the web was supposed to work. We've gotten away from it and now it's time to find our way back. The IndieWeb has long been working toward this.

Remember that the difference between domain.com/username and username.domain.com reveals a lot about how a service thinks about the web. Having a hostname or custom domain name means you own your content and can move it. I wish Mastodon had opted for @username.domain.com replies instead of @username@domain.com, so that it could naturally evolve to simply @manton.org.

On the second issue quoted from Kickstarter above, of managing hate and harassment, I knew this had to be planned for from the beginning. That's why it was my stretch goal and why I've been working with Jean MacDonald to guide the community. There is more about Micro.blog's unique take on balancing openness and safety in Part 6.

Mastodon has solved some technology problems and it has had great traction. I'm impressed with what developer Eugen Rochko has done with it.

But I'm just as interested in many things that Mastodon doesn't attempt to solve. Not just the technical issues, but especially around human behavior and empowering people — building UIs that encourage a great community, and tools for publishing that are tied to personal domain names and portable into the future. Micro.blog starts with that as its foundation.

If we want to keep our primary identity on our own blog, do we need to throw away the progress that Mastodon has made, cutting off our blog from everyone on Mastodon? No. By adding ActivityPub to blogging platforms, we can get compatibility for posts and replies with other Mastodon users, without running a Mastodon instance ourselves.

Micro.blog has built-in support for ActivityPub. After you've added your own domain name to your microblog, Micro.blog presents an option to enable ActivityPub support. Click Account from Micro.blog on the web and scroll down to the ActivityPub section. You can pick your own username at your own domain name:

[image:]

Now anyone on Mastodon can follow your blog by using your-username@your-domain.com. When they reply to your posts, the replies will appear in the Micro.blog timeline. Setting up ActivityPub in Micro.blog also lets you follow anyone on Mastodon, because to other Mastodon instances it looks like your blog is like a single-user Mastodon instance.

Your Mastodon-compatible username on Micro.blog is independent of any actual Mastodon instance. You can’t use it to sign in to Mastodon or use Mastodon apps. Instead, you can search for Mastodon users inside Micro.blog and reply to posts, and Mastodon users can follow your Micro.blog account and reply to posts as well. Your posts on Micro.blog can show up in Mastodon’s federated timeline.

To follow a Mastodon user on Micro.blog, click Discover on the web and look for the search button:

[image:]

Then enter a full Mastodon username in the search box:

[image:]

As more Micro.blog users interact with Mastodon users, some of those users will naturally show up in conversations or even be featured in our Discover timeline.

There are other options for Mastodon-compatible usernames, but with a focus on blogging. Pleroma bills itself as a “lightweight” fediverse server. Microblog.pub is a single-user microblogging server you can run yourself. Bridgy Fed takes a similar approach to Micro.blog, gluing ActivityPub support into an existing blog.

For WordPress, there’s a plugin to enable ActivityPub on your blog, allowing people to follow your blog from Micro.blog and Mastodon, and hooking into WordPress’s comment system for replies. Matt Mullenweg views ActivityPub as an important enough technology that Automattic hired the plugin’s developer, Matthias Pfefferle, to work on improving the plugin full time.

In a blog post about the IndieWeb and the fediverse, Ben Werdmuller wrote that he was moving away from cross-posting to other services, instead keeping the focus on his own site, now that he can participate in the larger world of Mastodon instances:

I want my site to connect to the indieweb; to the fediverse; to people who are connecting via RSS; to people who are connecting via email. No more syndication to third parties. My own website sits in the center of my online identity, using open standards to communicate with outside communities.

ActivityPub is now widely deployed and makes a great addition to most blog platforms, as long as there’s a solid foundation first with personal domain names, feeds, and IndieWeb standards.

Moving more to blog-based solutions for ActivityPub and the fediverse also helps with the separation of content away from platform silos. As we cover more in Part 6, even the most wrong-headed ideas sometimes need their own space on the internet. What they don’t need is to be shouted from the rooftops and echoed among followers in a social network’s algorithmic timeline.

Note that content amplification is not only technical. Substack has tried to walk a difficult line between their clearly expansive free speech beliefs and the need to moderate hate speech.

On one hand, their platform is well-suited to separating what content they will host from what they will promote. Authors can have a blog and email newsletter, largely writing about any crazy ideas they want without getting in too much trouble, as long as it's not featured by Substack. It’s terrible content off hidden in the corner of the platform, not easy to discover.

But because Substack is also facilitating subscription payments for authors, this creates a new tension that does not exist in platforms that don't have a way to monetize content.

Substack co-founder Hamish McKenzie wrote about their decision to allow Nazis to continue to publish on Substack:

We believe that supporting individual rights and civil liberties while subjecting ideas to open discourse is the best way to strip bad ideas of their power. We are committed to upholding and protecting freedom of expression, even when it hurts.

Because of the money, this goes beyond just "supporting" open discourse. Substack is effectively helping amplify authors' voices through indirect funding. By allowing them monetize their content, Substack is helping fund it.

WebSub

“That's called polling. And although it works, it's slow and inefficient, and about as annoying as a person in the backseat asking: ‘Are we there yet?’” — Brett Slatkin and Brad Fitzpatrick in a video for PubSubHubbub

The notifications-based approach of Mastodon means that there doesn’t need to be regular polling. Instead of a client checking a page or feed every few minutes for new posts, ActivityPub in Mastodon sends posts to all followers as the post is published.

Contrast with traditional RSS feed readers. One of the most important things a feed reader or new service like Micro.blog has to do is download posts from other sites via RSS. Whether that’s a Microformats feed, RSS, or a JSON Feed.

To check for new posts, Micro.blog makes an HTTP request to your blog for the feed:

[image:]

That's pretty simple, except that there are a lot of blogs out there. It's inefficient when scaled to thousands of blogs. Micro.blog is constantly working in the background to download feeds over and over to see if anything is new.

[image:]

Polling feeds is slow. In addition to making the HTTP request, the feed will also need to be parsed to check for new posts. To speed things up, Micro.blog and most feed readers support sending an If-Modified-Since or If-None-Match header, which lets the server return whether the feed has actually changed since the last time it was accessed.

When first requesting the feed, a client like Micro.blog or a feed reader would make note of the etag header in the response:

HTTP/2 200
content-type: application/json
etag: "r84z24dug"
last-modified: Wed, 02 Mar 2022 21:15:40 GMT
content-length: 17944

Micro.blog will store this etag value in its database. On subsequent requests, the client will send the etag, asking for new content only if the tag has changed, denoting that the feed has new posts in it:

GET /feed.json
If-None-Match: r84z24dug

If the feed hasn’t changed, Micro.blog will receive a “304 Not Modified” response.

There’s an even better way. The blog can notify the RSS aggregator, in this case Micro.blog, whenever there’s a new post. “Ping! I wrote a new post.”

[image:]

Instead of Micro.blog asking for the feed hundreds of times each day, even if there are no new posts, the blog itself reaches out to Micro.blog when there are actually new posts.

Micro.blog accepts 2 versions of a ping like this:

		Simple HTTP post

		XML-RPC based ping

The simple HTTP post looks like this, passing the feed URL as a URL-encoded parameter:

POST /ping
Content-Type: application/x-www-form-urlencoded

url=https://your-blog.com/feed.json

This is Micro.blog-specific and not a standard, but it is so simple that it's useful for scripts and other tools that work with Micro.blog.

The XML-RPC approach is a little more complicated. It uses the same XML protocol as the MetaWeblog API covered in the Micropub chapter. XML-RPC pings are still supported by WordPress.

XML-RPC is very verbose. As we've already covered leading up to JSON Feed, most developers do not want to work with an XML parser, let alone another layer of abstraction provided by XML-RPC.

This brings us to WebSub, a W3C recommendation from the IndieWeb community. It was formerly called PubSubHubbub.

WebSub provides a common mechanism for communication between publishers of any kind of Web content and their subscribers, based on HTTP web hooks. Subscription requests are relayed through hubs, which validate and verify the request. Hubs then distribute new and updated content to subscribers when it becomes available.

WebSub adds a new service — a hub — in between the RSS aggregator like Micro.blog and all the blog feeds. In your feed, you link to a hub that you will notify about new posts. Micro.blog can then "subscribe" to your blog using the hub:

[image:]

Now all the blogs can tell the hub when there’s a new post. The hub handles a lot of scaling complexity. A particular blog only has to notify the hub, not potentially many aggregators, and then the hub notifies Micro.blog:

[image:]

The more blogs that can support WebSub, the closer we’ll get to real-time notifications when new blog posts are published, improving the user experience of IndieWeb-friendly social networks that are distributed across the web. Because there can be multiple hubs, the notification load does not need to be concentrated in one place that could be a bottleneck.

No one wants to wait 5 minutes for a post to show up. Fast posting also enables new types of blogs, such as liveblogs.

WordPress.com already supports this by default. There is also a WordPress plugin for self-hosted blogs, and JSON Feed includes a hubs field so that WebSub support can be described for a blog without needing an RSS or XML feed.

Most blogs can use an existing WebSub hub. For anyone who wants to control every part of the notification process, Aaron Parecki’s open source project Switchboard is a hub you can host yourself.

Indie readers

“Modularity increases the chance that at least some of it can and will be re-used, improved, which you can then reincorporate.” — IndieWeb principles

Mastodon brought several protocols together in a new, more user-friendly web application that was familiar to Twitter users. On the IndieWeb side, "indie readers" attempt to do the same thing with IndieWeb protocols, providing a consistent interface on top of IndieWeb building blocks.

The UI for an indie reader is like a blending of Micro.blog's timeline and a traditional RSS feed reader. Users can subscribe to any blog, and in some cases even reply or favorite posts directly in the reader interface.

At IndieWeb Summit 2017, Jonathan LaCour introduced a session called “Putting it all together”. The reason that Facebook is so successful, he argued, is that they put together the entire experience: content creation with short status updates and photos; content consumption with a feed; and content interaction with likes and sharing.

Jonathan went on to demo a plug-in he had built for his RSS reader that let him reply and like blog posts:

My notion is that people should have this nice, integrated experience. And if they can, more people will use it, because it’s easy and interesting. It’s delightful.

To reach more people, we would need more tools and that meant an IndieWeb specification to provide a common interface for IndieWeb readers and servers.

Whereas most RSS readers sync with a centralized API like Feedbin, indie readers would distribute the syncing and caching of feeds to any number of servers. You could have your own indie reader server, or you could have an account on a shared server powered by software such as Aaron Parecki’s Monocle.

These servers are based on a new API called Microsub. What Micropub is for publishing posts, Microsub is for subscribing to blogs. Indie readers use both Micropub and Microsub to provide a unified interface to reading and posting.

Microsub

Micro.blog has always had a JSON-based API for following users and downloading posts in the timeline. It is based on JSON Feed, with some extensions just for Micro.blog.

What Microsub adds is a general framework for how to subscribe to blogs. It's a more open alternative to Micro.blog’s JSON API. If you want to build an app for reading the Micro.blog timeline and following users, you can build it against the Microsub API and your app will be compatible with more services, not just Micro.blog.

To sign in to an indie reader, you use your domain name. Unlike the Micro.blog API which is always hosted at micro.blog, the first step with using Microsub is to discover the user's endpoint by checking the HTML at their domain name.

Just like Micropub and Webmention, the Microsub endpoint is included in a link tag:

<link rel="microsub" href="https://micro.blog/microsub" />

Authentication in Microsub uses IndieAuth. After you have a valid token to call the Microsub server, you can make several types of requests, including:

		following a blog

		getting a list of posts in the timeline

Many responses in Microsub use JF2, a simplified version of the JSON flavor of Microformats. It resembles JSON Feed but is not the same thing, using different field names. A post in JF2 might look like this:

{
 "author": {
	"url": "https://aaronparecki.com/",
	"photo": "...",
	"type": "card",
	"name": "Aaron Parecki"
 },
 "url": "https://aaronparecki.com/2022/03/03/7/",
 "content": {
	"html": "<p>...</p>"
 },
 "published": "2022-03-03T15:57:29.000+00:00",
 "_id": "12546606",
 "type": "entry"
}

Just like Micropub, Microsub uses a single main URL. Different types of requests use the action parameter.

One of the most important things a Microsub server can do is aggregate multiple posts from the blogs you're following and put them together in a timeline. Microsub clients can then request these posts:

GET /microsub?action=timeline

The posts are in reverse-chronological order, just like Micro.blog. To page through additional posts, use the after parameter:

GET /microsub?action=timeline&after=12546606

Monocle and Aperture

In the spirit of IndieWeb’s principle of modularity, when Aaron Parecki began coding support for Microsub, he split that support into multiple projects. That way, each one can be swapped out for another tool if needed, or they can be used together:

		Monocle is the front-end UI for browsing channels and reading posts in the timeline.

		Aperture is the server implementation for managing feeds and channels.

		Watchtower is responsible for downloading web pages to see if they’ve changed.

		Switchboard is the WebSub hub we mentioned in the previous chapter.

Monocle provides a clean timeline UI and supports posting via Micropub. This is what it looks like when used with Micro.blog’s WebSub implementation:

[image:]

Other tools came out of that early IndieWeb Summit session and later work on Aperture. Together (for the web) and Indigenous (for iOS and Android) are two additional Microsub clients.

Micro.blog and Microsub

Micro.blog does not have the concept of user-editable groups of subscriptions. Instead, Micro.blog makes available to Microsub the core sections of its interface: Timeline, Mentions, Favorites, and Discover. Each of these is a hard-coded "channel" in Microsub.

GET /microsub?action=channels

The response from Micro.blog looks like this:

{
 "channels": [
 {
 "uid": "default",
 "name": "Timeline"
 },
 {
 "uid": "notifications",
 "name": "Mentions"
 },
 {
 "uid": "bookmarks",
 "name": "Bookmarks"
 },
 {
 "uid": "discover",
 "name": "Discover"
 }
]
}

Modern web platforms will need to be a blend of services: support for feeds with RSS and JSON, IndieWeb building blocks, and even some ActivityPub. Microsub and indie readers are an important part of this future. The default of closed silos like Twitter or Facebook — proprietary APIs, or increasingly no APIs at all — does not advance our goals for a more open, connected web.

	

	
	Part 6: Community

"Micro.blog is a small, friendly community and platform that understands the need for people to own their data but still freely express themselves on the web. A beacon of light in the darkness." — Adam Procter

Communities form when people get together around a shared interest. That could be comments on a niche blog. That could be tweets and replies around a topic on Twitter. There has to be a way for people to not just consume content, but participate.

In an interview between Om Malik and Matt Mullenweg on the True Ventures podcast, Foundation, Matt recollected how a community had formed around a discussion forum that he had set up on someone else's web site. Om Malik talked about how comments on blogs were just as important as the writing on the actual blog:

It's about the community and not the actual content. Because the conversations that happen in the comments were the key to making blogs what they were. And I think this forum is another testament that as human beings we do want to congregate to a communal place whether it's offline or online.

A community doesn't need to be on the largest platform, where "everyone" is. It just needs to have enough people who share an interest. This is why Micro.blog is still successful even though it is small. It's why Om talked about blog comments even though most blogs had very few readers. It's still enough to form a community and make people feel like they belong to something.

But for most bloggers, it didn't last. As Twitter and Facebook became more popular, blog comments were also being overrun with spam. Bloggers were finding that fewer people left comments on their posts, and when they did it was becoming a chore to manage.

Many bloggers closed their comments and pointed people to reply on Twitter instead. Eventually they abandoned their own web sites and just moved to Twitter or Facebook.

As we reverse that trend and bring back indie blogs, we should also think about the role of communities around those blogs, so that bloggers don't feel isolated and move back to a larger platform. Not all blogs need comments. But most blogs would benefit from being part of a platform that allows cross-site replies, connecting blogs together that share a common interest.

The web was always meant to be a read-write medium. Not just browsing, but posting too. When Tim Berners-Lee developed the first web browser on his NeXT workstation, he also developed a way to edit web pages. Tim would write in his book Weaving the Web:

My vision was a system in which sharing what you knew or thought should be as easy as learning what someone else knew.

Most people are not creating whole web pages, but instead fragments of what could be a page: a microblog post or a reply to someone else's posts. Together, all these posts and replies form communities. We should own this content, connecting our own blogs with replies on other blogs, and copying it only to platforms that are designed to encourage healthy conversations.

Replies

“As you may know, @replies were not originally part of Twitter. They were embraced by the community first, and then we built them into the system.” — Evan Williams, 2008 post about Twitter formalizing replies

In 2016 around the 10-year anniversary of Twitter's launch, Faruk Ateş wrote a post that gives a sense of the major changes Twitter had gone through, most of which were difficult to fully understand at the time. On the change with @-replies:

The second thing is that when they started hiding @-replies to people you don’t follow, they stripped the user experience of a vital ingredient for civility: peer transparency. The tone of discourse changed much for the worse over time, following that new behavior of the timeline. Before the rollout, all your friends would see if you behaved like a jerk to someone; after the rollout that was no longer the case. It removed the natural consequences of bad behavior, thereby encouraging people to reap the benefits of such bad behavior much more frequently.

Replies on Micro.blog go back to that earlier Twitter design. By default, when you reply to someone's post, all your followers see the reply even if they aren't following the person you are replying to. If you are following people who reply a lot, you can disable that behavior with a setting:

[image:]

Showing all replies by default helps your followers discover new people. Along with the Discover section, it's one of the best places to find new people. Seeing bits of other conversations also sets expectations for what the community is like.

Replies can come in several forms. At its simplest, you click "Reply" in Micro.blog and write something short:

[image:]

The reply is stored on Micro.blog and added to the timeline, threaded into the conversation. Micro.blog includes the reply in the timeline and Mentions section for any user referenced in the post.

Because Micro.blog is based on blogs, replying and mentioning other users does not work the same way as other social networks you may be used to. We've tried to build a system that is flexible enough to work with Micro.blog-hosted sites and external blogs.

There are several rules for processing replies and mentions:

		When replying to a post that is on an external blog, Micro.blog will attempt to send a Webmention to that blog post.

		If you post to your Micro.blog-hosted blog and include @username somewhere in the post, Micro.blog automatically converts that into a Markdown link to the Micro.blog user. Micro.blog also includes that mention in the user's timeline and Mentions section.

		For blogs hosted externally to Micro.blog, such as with WordPress, you are responsible for linking usernames for Micro.blog users you want to mention. Just including @username without a link will have no effect. It should be something like @username to indicate to Micro.blog that a specific user should be notified. Micro.blog does not automatically link any text in external blog posts. (By adding links yourself, posts will show up correctly not just on Micro.blog but also on your web site and in feed readers.)

		For an external blog post that is a reply to a specific Micro.blog post, the external blog can send a Webmention to Micro.blog. If the sending blog is associated with a Micro.blog user, that post will be copied to Micro.blog as a reply and threaded into the conversation.

Remember that microblog posts use HTML. Micro.blog doesn't attempt to auto-linking usernames after a blog post is published. We don't want to build a new platform that avoids HTML. Instead, it's about making the web itself better. A microblog post on the web should be readable in a web browser.

When I was first developing Micro.blog, I made a choice that quick replies in the timeline should be stored separately from regular blog posts. I thought that most people wouldn't want replies mixed in with their blog posts at their own domain name. I also liked that replies were simple, usually short and without images, because it makes the timeline much more readable.

But this design poked a hole in one of the most important goals of Micro.blog: owning your own content by having it at your own domain name. If someone wanted more control over their replies, they would need to use an external blog like WordPress, even though Micro.blog had great support for Webmention and cross-site replies.

In early 2020 we finally fixed this limitation. Storing replies outside of your Micro.blog-hosted blog, even if you could export them or move to another IndieWeb-friendly platform, was too silo-like for the mission of Micro.blog.

Now you can have your replies on your own blog, with reply permalink URLs at your own domain name. You can enable this on the Account screen. The popup menu will include any blog that's hosted on Micro.blog, so you could even create a separate microblog just for replies:

[image:]

Replies get a new reply post type in Hugo, which is used under-the-hood for your microblog. This means they won't show up in your default feeds or home page, although you can create a custom theme to change that.

Micro.blog adds a few Hugo parameters that can be used for reply HTML templates:

		.Params.reply_to_url: The URL for the post you are replying to.

		.Params.reply_to_hostname: Just the hostname part of the reply-to URL.

		.Params.reply_to_username: The username for the Micro.blog user you're replying to.

		.Params.reply_to_avatar: The URL for the Micro.blog user's profile photo.

Replies on your blog also get a special HTML template that includes the blog or Micro.blog username for the person you're replying to:

[image:]

This is common practice in the IndieWeb community.

You may want to link from your blog post to the conversation around that post on Micro.blog. When Micro.blog reads your feed, it creates a record for your post in the timeline. If you’re hosting on Micro.blog, you can install Sven Dahlstrand’s plug-in Conversation on Micro.blog to add a link automatically to your blog posts.

If you’re hosting elsewhere or want more control, Conversation.js also includes the URL for your post on Micro.blog in JSON Feed’s home_page_url field.

GET https://micro.blog/conversation.js?url=https://example.com/your-blog-post.html&format=jsonfeed

Response:

{
 "version": "https://jsonfeed.org/version/1",
 "title": "Conversation",
 "home_page_url": "https://micro.blog/manton/13029114",
 ...
}

You can use JavaScript or a server-side script to retrieve this JSON Feed and then use the URL in home_page_url for linking from your blog to the conversation on Micro.blog.

Harassment

"It’s worrying how easily the most vile of fringe views can be elevated by seemingly-benign features when they're applied at the scale of YouTube or Facebook." — Nick Heer

Buzz Andersen, the developer of the third-party Twitter app Birdfeed who had warned about Twitter using auth changes to lock down their platform, also saw how the tone of conversations was changing. From his blog in 2014:

Twitter in 2014 feels like it has settled into a default state of hostility and rage.

Years after Buzz posted that quote to his blog, not much had changed.

Something about 140 characters exaggerates our best and worst qualities. 140 is good because it encourages easy posting, but for some people it’s a little too short, and they don’t think before they type.

Even though the limit is 280 characters now, which I do think can encourage more thoughtful replies, many people have been trained on short replies.

At the beginning of 2017, Lindy West wrote for the Guardian about the harassment she’s had to deal with on Twitter:

I talk back and I am "feeding the trolls". I say nothing and the harassment escalates. I report threats and I am a "censor". […] I have to conclude, after half a decade of troubleshooting, that it may simply be impossible to make this platform usable for anyone but trolls, robots and dictators.

She deleted her account. Something was fundamentally broken because Twitter didn’t plan for harassment from the beginning.

Danah Boyd gave a speech after accepting an award from the Electronic Frontier Foundation. She talked about harassment in the workplace, not just online, highlighting that this takes work to solve. There are no shortcuts:

Taking short-cuts may be financially profitable in the short-term, but the cost to society is too great to be justified. In a healthy society, we accommodate differently abled people through accessibility standards, not because it’s financially prudent but because it’s the right thing to do. In a healthy society, we make certain that the vulnerable amongst us are not harassed into silence because that is not the value behind free speech.

Frustrated by these platforms, many people in 2017 and 2018 took a break from Twitter and Facebook or quit completely. The IndieWeb maintains a partial list of silo quits: folks in the tech world like Susan Fowler and Leo Leopard; celebrities like Jim Carrey and Cher; and Journalists like Walt Mossberg and Mike Elgin.

Some people retreated to Instagram, hoping to find a quiet place to escape harassment or politics. As Taylor Lorenz wrote about for The Atlantic, Instagram itself had a massive harassment problem:

Even lifestyle Instagrammers, long considered the platform’s bread and butter, have begun questioning their place on it as a result of rampant harassment. In June, fashion-and-beauty Instagrammer Suzanne Jackson, who has more than 237,000 followers, spoke out, saying that she and other influencers are “no longer ignoring” the abuse they receive on the platform

Alternative social networks have come and gone, from App.net to Ello. They haven’t cracked this problem. They are usually just as centralized and would suffer from similar abuse if they got popular enough.

There have been attempts to automate our way out of the harassment problem. Some programmers likely view harassment as a software bug that can be worked around. As I was launching the Kickstarter for Micro.blog, I fell into the same trap, thinking I could automatically flag hurtful posts for review.

The nuance of language — and the many ways that people can be jerks online — makes detecting harassment very difficult. Manual review and moderation can't be avoided.

Casey Newton investigated Facebook's content moderators for The Verge in a tragic story about outsourcing what should be one of Facebook's most important tasks: catching abusive posts and disturbing photos. Moderators would review the worst posts on the platform that were flagged for review, so bad that the moderators would have panic attacks or become depressed, needing counseling. It was revealed to be a traumatic, stressful job.

Using contractors allowed Facebook to scale up quickly around the world for much less cost than a permanent employee:

The use of contract labor also has a practical benefit for Facebook: it is radically cheaper. The median Facebook employee earns $240,000 annually in salary, bonuses, and stock options. A content moderator working for Cognizant in Arizona, on the other hand, will earn just $28,800 per year. The arrangement helps Facebook maintain a high profit margin.

Facebook is right to hire thousands of content moderators. But those people should be real employees with healthy working conditions, not people who Facebook feels no responsibility to take care of.

This is the most damning article I've ever read about Facebook, not just because of the unacceptable way the moderators are treated, but because of what it says about Facebook's approach. Facebook is hiring contractors because they think this is a short-term problem, only needed long enough for them to develop the machine learning and artificial intelligence necessary to automatically catch problems.

We will always need human curators. But there are a range of things that better software can help detect.

Webmention is a modern version of TrackBack, which was very susceptible to comment spam. TrackBacks included an excerpt and link to include as a comment, and there wasn't usually any verification that the site sending the TrackBack actually linked to the blog post. Spammers could send arbitrary TrackBacks to hundreds or thousands of unrelated sites, essentially sprinkling spam links across the web.

Vouch is an extension to Webmention that helps address this. When sending a Webmention with Vouch, a vouch URL parameter is added in addition to the source and target. This extra parameter is the URL for a third site that has linked to you before, and which the target URL has also linked to.

The IndieWeb wiki describes the motivation for sites receiving a Webmention:

You should implement receiving Webmention with Vouch in order to automatically block all automated spam and to aid in moderation of mentions.

If we can automatically trust the incoming Webmention, it can be accepted and shown on our blogs without being held for moderation. And, importantly, we are less likely to be harassed by someone who has been vouched for by someone else we've linked to before.

Instagram also made a renewed push in 2019 to minimize harassment by detecting text that looked offensive:

In the last few days, we started rolling out a new feature powered by AI that notifies people when their comment may be considered offensive before it’s posted. This intervention gives people a chance to reflect and undo their comment and prevents the recipient from receiving the harmful comment notification. From early tests of this feature, we have found that it encourages some people to undo their comment and share something less hurtful once they have had a chance to reflect.

Instagram would later expand the feature, actively warning users if they tried to post a new photo caption that was "similar to those reported for bullying".

These are good features, but we shouldn't be fooled into thinking all community issues can be solved through automation. Facebook, Instagram, and Twitter still have a massive task ahead of them.

Silicon Valley likes to think of web-based platforms that can scale to great profitability as having "zero marginal cost". That is, the cost of running the platform does not increase significantly as more users are added. It's not like scaling a company that sells physical goods, where there are obvious manufacturing or shipping expenses for every new customer.

There is a cost for these social media platforms, though. It's just a cost that they have been avoiding until now. For massive platforms, there must be a comparable large staff to stay on top of harassment and misinformation.

Misinformation

“We must reject the culture in which facts themselves are manipulated, and even manufactured.” — Joe Biden, January 20th, 2021

Go back to 2016. Awareness might have hinged on 77,000 votes across Michigan, Wisconsin, and Pennsylvania. On the morning of November 9, 2016, the United States woke up to a president-elect Donald Trump, and the search for answers began. Trump had benefited from foreign interference and a widespread misinformation campaign, conducted through social media.

This was when many of us realized how deep the privacy issues ran in Facebook. In their attempt to become a platform for apps, Facebook had opened Pandora's box. They've spent the last few years trying to close it.

Misinformation littered the Facebook news feed, fake headlines re-shared to friends over and over. Hillary Clinton, writing in her book What Happened:

Throughout the 2016 campaign, I watched how lies insinuate themselves into people’s brains if hammered often enough. Fact checking is powerless to stop it. Friends of mine who made calls or knocked on doors for me would talk to people who said they couldn’t vote for me because I had killed someone, sold drugs, and committed any number of unreported crimes, including how I handled my emails. The attacks were repeated so frequently that many people took it as an article of faith that I must have done something wrong.

Facebook, as the world’s largest platform, intertwined several problems — viral spread of fake news, information bubbles, and Cambridge Analytica’s harvesting of user data — pushing them together at scale to create a perfect storm of misinformation. Not a coordinated political campaign but digital chaos outside traditional polls and media.

Cambridge Analytica was a company that gathered the personal data Facebook originally allowed third-party apps to access, including data on friends that used an app. While only 270,000 people directly used the app, Cambridge Analytica was able to collect data on over 87 million people from those connections. They used this data to help political campaigns more efficiently target ads.

Facebook executive Andrew Bosworth, in an internal post years later that was leaked and then posted publicly, pushed back against some of the characterization in the press that Facebook should have done more to prevent misinformation on their platform. While he argued that the facts are often wrong when criticizing Facebook, the scrutiny they've received is "broadly right":

The company Cambridge Analytica started by running surveys on Facebook to get information about people. It later pivoted to be an advertising company, part of our Facebook Marketing Partner program, who other companies could hire to run their ads. Their claim to fame was psychographic targeting. This was pure snake oil and we knew it; their ads performed no better than any other marketing partner (and in many cases performed worse). I personally regret letting them stay on the FMP program for that reason alone.

Cambridge Analytica also played a role in Brexit. In an article for The Guardian only months after the election, Carole Cadwalladr helped untangle the relationship between billionaire Robert Mercer, who had funneled millions of dollars to Trump, and Robert's investment in Cambridge Analytica. Carole also talked to Andy Wigmore, communications director for Leave.eu. While leave has denied they hired Cambridge Analytica, Andy shared how Facebook was the key to their entire Brexit campaign:

A Facebook ‘like’, he said, was their most “potent weapon”. “Because using artificial intelligence, as we did, tells you all sorts of things about that individual and how to convince them with what sort of advert. And you knew there would also be other people in their network who liked what they liked, so you could spread. And then you follow them.

All of this was possible because of how much data Facebook collects: what you like, who your friends are, who your friends' friends are. But also because Facebook is a platform to serve ads. It provides both the means for who to target with what message, and a platform for targeting them.

In a later TED Talk, Carole expanded on the role of Facebook in Brexit, telling the story of how she talked to people who were worried about immigration. These people were repeating the same messaging they saw in Facebook ads. And these ads were shown in the news feed but there was no archive and no transparency into what people were seeing:

Most of us never saw these ads, because we were not the target of them. Vote Leave identified a tiny sliver of people who it identified as persuadable, and they saw them. And the only reason we are seeing these now is because Parliament forced Facebook to hand them over.

Platforms should be transparent, but ad-based platforms often have unclear rules for what any given user will see. Promoted tweets are ads that can exist only in certain user timelines, not generally available on the profile for the account that owns the promoted tweet.

Because blogs are associated with an author and their own domain name, they provide a more permanent, stable record for content. There are no tricks, hidden posts, or content targeted at a subset of users.

Ad-based networks like YouTube let advertisers give in to "the algorithm", not knowing which videos their ads are running on. John Gruber blogged about this when it was revealed by The Guardian that 100 top brands were effectively funding climate change misinformation:

I really feel as a culture we are barely coming to grips with the power of YouTube, Facebook, and to some degree, Twitter, as means of spreading mass-market disinformation. The pre-internet era of TV, print, and radio was far from a panacea. But it just wasn’t feasible in those days for a disinformation campaign — whether from crackpots who believe the nonsense, corporate industry groups, or foreign governments — to get in front of the eyes of millions of people.

Misinformation fuels conspiracy theories. It's a threat to democracy, if we don't know who to trust. It's the threat of fear, if hate leads to terrorism.

In 2019 there was a mass shooting at mosques in Christchurch, New Zealand. My heart goes out to the families of loved ones at the mosques and all of New Zealand. After an earlier shooting in Parkland, Florida, I drafted a long blog post about gun violence but never ended up posting it. Even after editing it a few times a month later, it felt like the words or timing were always wrong.

Over the last couple of years we've seen a growing backlash against social media. I won't look for the video of this tragedy from New Zealand, and I hope I never accidentally see it. It is heartbreaking enough with words alone. Every story I read about it kept pointing back to the frustration with how Facebook, Twitter, and YouTube are not doing enough to prevent their platforms from amplifying misinformation and hateful messages.

Margaret Sullivan of the Washington Post writes about the problems with social media leading up to and after a tragedy like this mass shooting:

To the extent that the companies do control content, they depend on low-paid moderators or on faulty algorithms. Meanwhile, they put tremendous resources and ingenuity — including the increasing use of artificial intelligence — into their efforts to maximize clicks and advertising revenue.

Charlie Warzel of the New York Times covers this too:

It seems that the Christchurch shooter — who by his digital footprint appears to be native to the internet — understands both the platform dynamics that allow misinformation and divisive content to spread but also the way to sow discord.

Facebook said that in the 8 months after the shooting, they had taken down 4.5 million pieces of content related to it.

In an A List Apart article on how tech companies are protecting hate speech, Tatiana Mac asks who benefits from these cruel videos being shared:

The mass shooter(s) who had a message to accompany their mass murder. News outlets are thirsty for perverse clicks to garner more ad revenue. We, by way of our platforms, give agency and credence to these acts of violence, then pilfer profits from them. Tech is a money-making accomplice to these hate crimes.

Fake news and sensational videos spread quickly. Nick Heer links to an article in The Atlantic where Taylor Lorenz documents how after following a far-right account, Instagram started recommending conspiracy accounts to follow, which filled her feed with photos from Christchurch:

Given the velocity of the recommendation algorithm, the power of hashtagging, and the nature of the posts, it’s easy to see how Instagram can serve as an entry point into the internet’s darkest corners. Instagram “memes pages and humor is a really effective way to introduce people to extremist content,” says Becca Lewis, a doctoral student at Stanford and a research affiliate at the Data and Society Research Institute.

After the shooting, there was an outpouring of support on social media and personal sites. Duncan Davidson asked on his blog: "What are we going to do about this?"

The last few years, the worst side of humanity has been winning in a big way, and while there’s nothing new about white supremacy, fascism, violence, or hate, we’re seeing how those old human reflexes have adapted to the tools that we’ve built in and for our online world.

I can't help but think about Micro.blog's role on the web whenever major social media issues are discussed. We feel powerless against world events because they're on a scale much bigger than we are, but it helps to focus on the small things we can do to make a difference.

Micro.blog doesn't make it particularly easy to discover new users, and posts don't spread virally. While some might view this as a weakness, and it does mean we grow more slowly than other social networks, this is by design. No retweets, no trending hashtags, no unlimited global search, and no algorithmic recommended users.

We are a very small team and we're not going to get everything right, but I'm convinced that this design is the best for Micro.blog. We've seen Facebook's "move fast and break things" already. It's time for platforms to slow down, actively curate, and limit features that will spread hate.

It’s okay to be wrong on the internet. As long as it’s within the law and not hurting anyone. As long as it’s not amplified to a larger audience.

If everything is a social network with trends and algorithms, there would be no place to be wrong because being wrong on social risks spreading misinformation. We need quieter spaces too, corners of the internet where there’s just a simple web page with bad ideas that no one links to.

Perhaps we lose something when everything is moderated at the same level. When everything is sanitized and politically correct.

This is at the heart of Micro.blog’s effort to combine both blog hosting and a social timeline. Each half of the platform has its own purpose and its own requirements for moderation. On the social side, there’s less tolerance for being a jerk or harassing others. On the open web hosting side, there’s more freedom to yell into the void.

Instagram is not immune to misinformation. In June 2019, an Instagram account named "Sudan Meal Project" promised to give a meal to starving Sudanese children when the account was followed or shared. It amassed hundreds of thousands of followers before everyone realized it was fake.

Taylor Lorenz wrote for The Atlantic about dozens of similar fake accounts, all making promises they can't keep and spreading "facts" about Sudan that were not even accurate:

When tragedy breaks out, it’s natural to turn to social media to find ways to help. But legitimate aid organizations—most of which don’t have the social-media prowess of top Instagram growth hackers—are no match for the thousands of Instagram scammers, meme-account administrators, and influencers who hop on trends and compete for attention on one of the world’s largest social networks.

All it takes is one person to search and find the fake account, repost it, like it, and as if it's a snowball rolling downhill, it gathers more likes and links and eventually seems like a legitimate account. Big social networks like Instagram are designed to amplify accounts that gain traction, whether they are fake or not.

Micro.blog limits search and avoids public likes and reposts so that the snowball starts small and stays small. Instead of going viral and becoming a major problem, fake accounts can be spotted early and shut down if necessary.

Fringe views are amplified by repetition. In an investigation by The Verge about Facebook content moderators, they discovered that the moderators who kept viewing the same misinformation over and over started to believe the lies they were hired to moderate:

The moderators told me it’s a place where the conspiracy videos and memes that they see each day gradually lead them to embrace fringe views. One auditor walks the floor promoting the idea that the Earth is flat. A former employee told me he has begun to question certain aspects of the Holocaust.

In 2019, Twitter announced in a blog post that they have removed over 900 fake accounts spreading misinformation about the protests in Hong Kong:

This disclosure consists of 936 accounts originating from within the People’s Republic of China (PRC). Overall, these accounts were deliberately and specifically attempting to sow political discord in Hong Kong, including undermining the legitimacy and political positions of the protest movement on the ground. Based on our intensive investigations, we have reliable evidence to support that this is a coordinated state-backed operation.

I like that Twitter is being proactive and transparent about this. It's especially remarkable that they notified a competitor, Facebook, about similar fake accounts on Facebook's platform.

Unfortunately there's a deeper problem here. It's not just the fake accounts and misinformation, but the way that Twitter's design can be exploited. It is too easy to piggyback on trending hashtags to gain exposure.

Maciej Cegłowski of Pinboard called attention to the promoted tweets:

Every day I go out and see stuff with my own eyes, and then I go to report it on Twitter and see promoted tweets saying the opposite of what I saw. Twitter is taking money from Chinese propaganda outfits and running these promoted tweets against the top Hong Kong protest hashtags

I wrote about this in 2018 when introducing Micro.blog's emoji feature:

Hashtags and Twitter trends go together. They can be a powerful way to organize people and topics together across followers. But they can also be gamed, with troublemakers using popular hashtags to hijack your search results for their own promotion or unrelated ranting.

We've expanded search and discovery in Micro.blog slowly for this reason. While Micro.blog is certainly too small to attract the attention of state-run propaganda, there has been spam going through Micro.blog that no one else sees. We have disabled thousands of accounts. Limited search, no trends, and active curation are the right foundation so we don't end up with a design that creates problems when Micro.blog does get bigger.

We need to minimize the points where platforms can be exploited. Indie microblogging puts the focus back on people and their identity on the web, making what you see in your timeline a more deliberate act.

Avaaz is a network for activists that covers a range of issues, including a report about fake news on Facebook ahead of the 2020 election. They think social platforms can go even further to "correct the record" when fake news has tricked users into believing lies. Because fake news often spreads virally and much farther than the correction, it's important to notify users who have viewed fake news that there is a correction:

This solution is proven to work and would tackle disinformation while preserving freedom of expression, as “Correct the Record” provides transparency and facts without deleting any content.

Avaaz created a mock-up of what this might look on the site factbook.org.

Because of Facebook's scale, Facebook can't even fact-check ads quickly enough for a "correct the record" solution to work. Judd Legum posts in a Twitter thread that no amount of clicking "report" in Facebook will guarantee that it will be reviewed:

If there are a lot of reports, or Facebook's automated systems are triggered, Facebook will put the ad into a cue where third party fact checkers can fact check it IF THEY FEEL LIKE IT

An algorithm is prioritized over people. The perpetual stream of posts coming through Facebook means it's almost impossible to keep up, to get that fake post in front of real people who can review it instead of algorithms.

There are exceptions with newsworthy events. In the final weeks of the 2020 presidential campaign, as Trump was recovering from COVID-19 and continuing to downplay the virus, Facebook acted quickly to remove a Trump post that alleged that COVID was “less lethal” than the flu. It was easily fact-checked and clearly against Facebook’s rules against misinformation around COVID-19.

Twitter chose to hide the tweet behind a warning, which also prevents the tweet from accumulating likes and retweets, minimizing its spread:

[image:]

Twitter has made some additional progress to preempt sharing inaccurate news. In 2020 they experimented with adding a prompt to make sure you've read an article you are retweeting:

To help promote informed discussion, we're testing a new prompt on Android –– when you Retweet an article that you haven't opened on Twitter, we may ask if you'd like to open it first.

It's a step in slowing down the spread of misinformation. It could dampen the viral growth of damaging ideas. But this feature is counter to Twitter’s business of engagement and ads. Four years after the 2016 election, when misinformation and political ads ran unchecked, social media companies had done very little to fundamentally rethink their platforms.

Viral spread is a feature of large social networks that can be a double-edged sword. The irony is that some of the features I dislike the most (for example, the viral spread of misinformation or hate) can also be empowering when voices need to be heard.

Black Lives Matter would not have been as impactful a movement if not for massive social media. Shining a light on hateful rhetoric or even physical violence against minorities often starts from individuals whose videos achieve a reach far beyond their usual audience.

The government is more attuned to the viral spread of misinformation than ever. In 2021, Surgeon General Vivek Murthy spoke about health misinformation during the COVID pandemic. In a statement and Q&A announcing the guidance, Murthy said:

Modern technology companies have enabled misinformation to poison our information environment, with little accountability to their users. […] They've designed product features, such as like buttons, that reward us for sharing emotionally-charged content, not accurate content. And their algorithms tend to give us more of what we click on, pulling us deeper and deeper into a well of misinformation.

The impact of COVID misinformation creeps up on us slowly, as infections climb. The impact of hateful misinformation feels more immediate, such as in gun violence, where very repeated headline is like another stab of heartbreak for those we’ve lost. If the democratization of TV into live-streaming is inevitable, how do platforms do it without incentivizing violence?

There must be balance, letting the good ideas spread while reserving control over the spread of misinformation. There also must be balance between the responsibility of platforms and of the government.

Section 230

"In order to maintain a tolerant society, the society must be intolerant of intolerance.” — Karl Popper

In 1996, the United States Congress passed the Communication Decency Act. At the time, there was concern among web site creators and advocates for the open web that the law would go too far to regulate content on the internet. And a year later, the Supreme Court at least partially agreed, striking down some provisions of the law around “indecent” content.

The full act is part of a telecommunications bill that predates computers and comprises hundreds of sections. Section 230 covers whether platform providers are responsible for content posted on their platforms.

Text of the act was written for the likes of dial-up services AOL and Prodigy, yet remains relevant for today’s web-based platforms:

No provider or user of an interactive computer service shall be treated as the publisher or speaker of any information provided by another information content provider.

Over twenty years later, Section 230 of the Communication Decency Act is still one of the only laws we have for guiding how social networks should curate posts. Are they liable for offensive or harmful content? Are they a publisher (like a newspaper) that has editorial oversight of content?

This played out on a large scale with Trump, who had an enormous following on Twitter and often pushed right up to the line drawn by community guidelines, and sometimes over it.

In the protests in Minneapolis in 2020, one of Trump’s tweets was flagged by Twitter, requiring an extra click to view it. From a summary in The Week magazine:

You can still read President Trump's early-Friday tweet about sending the National Guard into Minneapolis if you go to his Twitter feed, but you now have to take an extra step to read the follow-up tweet threatening: "When the looting starts, the shooting starts."

Similar to the warning when viewing a sensitive photo or video, Trump’s tweet was flagged and replaced with a warning that it violated Twitter’s rules about glorifying violence.

Trump vs. the Twitter content policy would only accelerate in the years after that. Twitter attempted to fact-check tweets, working with “trusted partners”. Trump tweets that violated the guidelines would remain up but with a disclaimer, and some tweets were essentially locked so that it couldn’t be retweeted or liked, limiting their spread.

Trump signed an executive order pushing back against Twitter, but it was largely ineffective. Reporting from Ars Technica:

The centerpiece of the order is an effort to strip big technology companies of protection under Section 230, a federal law that immunizes websites against liability for user-submitted content. That would be a big deal if Trump actually had the power to rewrite the law. But he doesn't. Rather, his plan relies on action by the Federal Communications Commission, an independent agency that has shown no inclination to help.

There was also a question of whether a Trump tweet essentially received more coverage because Twitter took action to curate it, as the curation itself became news, further repeating Trump’s claims. In other words, did the process of trying to fix the problem actually make it worse. But the context for the news matters.

While it might be true that more people saw Trump's tweet because of Twitter's actions, the context in which they saw the tweet (screenshots on CNN, The New York Times, or other web sites) is completely different. Republishing the tweet puts it in a context of essentially fact-checking it, whereas if the tweet was just retweeted or shared on Facebook to millions of followers, it could do much more damage. One really important feature in Twitter's "hide this tweet" curation is that it prevents the tweet from being liked or retweeted.

Four weeks before the 2020 election, tech company CEOs were again called to testify before Congress. Democrats thought tech companies weren't doing enough to moderate misinformation on their platforms, with Section 230 essentially letting them off the hook. Republicans thought tech companies were biased against conservatives.

From Twitter finally flagging Trump’s tweets, to Facebook hiring thousands of content moderators, social networks were finally realizing that whether new laws were written to replace Section 230 or not, they had to do more. Rolling the dice by only letting algorithms surface content with little human oversight wasn't working.

Generally "more speech" is good, but the Republicans in the senate hearing were talking about censorship when the debate should be about whether anyone has a right to amplify news stories, especially a week before an election. At the time, Twitter had just stopped anyone from linking to a sensational New York Post story about Joe Biden’s son Hunter Biden. Twitter may have overreached, but they tried to err on the side of preventing fake news from going viral, which is a worthwhile goal.

Senator Ted Cruz was frustrated with Twitter CEO Jack Dorsey:

As you know, I have long been concern about Twitter's pattern of censoring and silencing individual Americans with whom Twitter disagrees. But two weeks ago, Twitter and to a lesser extent Facebook, crossed a threshold that is fundamental in our country. Two weeks ago, Twitter made the unilateral decision to censor the New York Post.

Cruz acted like Twitter controls what the New York Post can publish. The New York Post obviously has their own newspaper and can publish whatever they want.

More transparency and accountability is good. Even better would be to get away from having huge platforms to begin with.

All of this culminated in the January 6th insurrection at the US Capitol. Misinformation about the 2020 election results, combined with private groups for organizing events in Washington DC, led to physical violence and came dangerously close to upsetting the peaceful transfer of power in our democracy.

Twitter and Facebook suspended Trump’s account, and in the following months attention turned again to Facebook. Frances Haugen, formerly of Facebook, leaked internal Facebook documents providing new insight into how Facebook’s ad-based business model created many of its problems with moderation.

In a senate haring, Haugen was a compelling witness, showing deep knowledge of the issues and potential solutions to Section 230. From The New York Times:

Ms. Haugen suggested a change to Section 230 of the Communications Decency Act, the law that protects platforms from being held legally liable for content posted by their users. Specifically, she said she would recommend exempting platform decisions about algorithms from Section 230 protections -- so that Facebook and other apps could be sued for their choices about how to rank content in users’ feeds.

We don’t know what the final form of a law adjusting Section 230 will look like, but clearly the days of big social networks being insulated from legal action are over. When they lose that immunity, they will have to dial back the algorithmic parts of their platforms that run uncontrolled with too little oversight.

Unattended algorithms

"Technology is inherently a force multiplier, by default it amplifies the already powerful more than the less privileged, widening existing power gaps." — Tantek Çelik

An algorithm is just code a programmer wrote, often to process data or display it to the user. Apps have many algorithms. Very few of them are noteworthy.

The word "algorithm" for social networks takes on special meaning because it is used to explain why something doesn't work the way we expect it to. The "algorithmic timeline" is a normal timeline, but with posts in an order that we can't predict. Technically, a chronological timeline is also controlled by an algorithm, but the algorithm is transparent: it puts the posts in order by date.

The way a feature works influences what users can do and how they interact with the platform. The algorithms that make up a feature, if developed thoughtlessly, can lead to a user-hostile or counterintuitive experience.

Om Malik blogged about the early days of Twitter, when they were so busy it was easy to accidentally standardize the way the platform worked without thinking through what impact certain features would have:

I was there at the proverbial birth of Twitter. All along, it has been held together by proverbial chewing gum and tape. There wasn’t much thought about how things could go wrong. Instead the focus was: Can we keep the machines running? Can we keep growing? Can we stay competitive with Facebook? Until some of us started questioning their data and their platform challenges, it didn’t seem to be a top priority.

What drives the algorithms? Ad-based social networks want more engagement: clicks, likes, and retweets. The Verge covered some of how engagement is measured in an article about Twitter topics:

Finally, Twitter looks at engagement: how many other people who care about this topic liked, retweeted, or replied to a tweet? The more people are interacting with the tweet, the more likely it is to make the cut.

TikTok is all algorithm. You don’t follow anyone. You don’t organize feeds or topics. Just let it show you popular, entertaining videos, endlessly.

For TikTok, the algorithm is considered the secret sauce, playing a large role in the app’s success. When the Trump administration attempted to force a sale of TikTok to a US-based company, the Chinese government pushed back with a new regulation controlling the sale of algorithms like the one that powers TikTok. It became a deal-breaker for a potential acquisition by Microsoft, who did not want to own TikTok without also controlling the algorithm.

Neil Stephenson, in an interview with PC Magazine for his new book, talked about the problems with social media algorithms:

We've turned over our perception of what's real to algorithmically driven systems that are designed not to have humans in the loop, because if humans are in the loop they're not scalable and if they're not scalable they can't make tons and tons of money.

I think more social networks should do things that don't scale, prioritizing safety over profit. For example, in Micro.blog the featured posts in Discover are curated by humans instead of algorithms.

In contrast, significant parts of Facebook and Twitter seem to run unattended. Jay Rosen said in an interview for Anil Dash’s podcast, Function:

They build a machine that they couldn't control and they couldn't know exactly what it was doing. So we've built this thing and in a sense, no one is running it. And in that, there are things that it's doing to the culture and the environment that we cannot track.

After the film The Social Dilemma came out, Facebook published a paper trying to counter it:

Facebook uses algorithms to improve the experience for people using our apps — just like any dating app, Amazon, Uber, and countless other consumer-facing apps that people interact with every day. That also includes Netflix, which uses an algorithm to determine who it thinks should watch ‘The Social Dilemma’ film, and then recommends it to them. This happens with every piece of content that appears on the service.

But Netflix is a highly-curated service where every film has been approved or funded. The Netflix algorithm can’t accidentally promote the type of terrible, dangerous content that sometimes surfaces on Facebook.

The combination of massive amounts of user-generated content on Facebook, an overwhelmed, outsourced content moderation staff — Facebook’s scale makes it unlike Netflix or any other smaller, curated service. And Facebook’s algorithm naturally tries to give you more of the same instead, leading you deeper into your filter bubble, because broadening your interests to more diverse content might turn you away.

There was more pushback against Facebook after they refused to remove an edited video of Nancy Pelosi in 2019, choosing instead to try to educate users that the video was fake. Monika Bickert, Facebook's vice president of global policy management, went on CNN to defend their decision. She described how Facebook works with fact-checking organizations to independently confirm whether something is accurate:

As soon as we get a rating from them that content is false, then we dramatically reduce the distribution of that content, and we let people know that it is false so they can make an informed choice.

I signed in to Facebook to try to understand what they had done. I actually had trouble finding the video at first, maybe because none of my friends on Facebook had shared it. Searching for Nancy Pelosi did include Facebook groups such as "Nancy Pelosi is Insane" and "Americans Against Nancy Pelosi", featured prominently in the search results. If you came to Facebook to hate a politician, and discuss that hate with other users, Facebook sure made it easy.

I finally found the video, but there was no callout that it was fake. The version I saw was captured with a camera pointed at the video playing elsewhere, likely confusing Facebook's algorithm for finding an exact copy of the video.

Kara Swisher wrote in an editorial for The New York Times:

The only thing the incident shows is how expert Facebook has become at blurring the lines between simple mistakes and deliberate deception, thereby abrogating its responsibility as the key distributor of news on the planet.

This abrogation of responsibility takes other forms too: calling for regulation on what content should be removed, and outsourcing some work to independent fact-checkers. Both efforts are effectively delay tactics. Facebook can't outsource everything. Someone has to make the tough decisions.

Twitter developed an algorithm to surface news you might be interested in directly in your notifications. This space for notifications was previously reserved for @-mentions you received from other users. Matt Haughey blogged about how the algorithm now seems optimized for outrage:

The “in case you missed it” feature that is the default sort had grown to constantly stoke outrage. It would show me the most RTed and liked tweets at the top, often up to 24 hours after they were posted. In our current political climate that meant for 24hrs after any major event, I would see tons of tweets stuffed into the top of my timeline, even hours after things were debunked or stories shifted.

Users retweet posts that are controversial. Twitter’s trends algorithm rewards spreading the sensational, the newsworthy, the topic that might spark surprise or outrage. Kara Swisher wrote in The New York Times that social networks "are designed so that the awful travels twice as fast as the good".

In an interview with 60 Minutes, YouTube CEO Susan Wojcicki said that the scale of YouTube wouldn't work if they had to review more content. The recommendation algorithm is so integral to YouTube that the CEO can't conceive of a version of YouTube without it:

If we were held liable for every single piece of content that we recommended, we would have to review it. That would mean there’d be a much smaller set of information that people would be finding. Much, much smaller.

Facebook is trying to solve this problem with more moderation, but it's a band-aid on a system that is working as designed to surface "relevant" content for more ad views. It's not enough without significant changes to the algorithms as well.

Donald Trump was impeached on November 18th, 2019. Three months earlier, the investigation had begun after a whistleblower reported on potential wrongdoing and abuse of power by the president.

One defense of Trump was to target the whistleblower himself, attempting to reveal his identity and attack the process instead of the substance of the report. Facebook and YouTube both moved to block the spread of the whistleblower's name. Twitter initially said they would not, as reported by the Washington Post:

Twitter defended its decision to allow the sharing of the CIA officer’s name, saying the tweets in question did not include the type of private details that go against the platform’s rules.

Facebook went further. Facebook spokesman Andy Stone told the Washington Post:

Any mention of the potential whistleblower’s name violates our coordinating harm policy, which prohibits content ‘outing of witness, informant, or activist.’ We are removing any and all mentions of the potential whistleblower’s name and will revisit this decision should their name be widely published in the media or used by public figures in debate.

An algorithm that surfaces content for users, such as when Twitter added news to the notifications screen, can also do the opposite: de-emphasizing certain information like the whistleblower's name.

A week after Facebook and YouTube announced they would block the whistleblower's name, they had been largely unsuccessful. The New York Times followed up on users coordinating how they shared the name to avoid being detected:

But Facebook users, for example, have been creative in their efforts to sidestep the company’s content moderation. They have avoided using the name within the text of their posts, which could alert A.I. systems screening for it. Instead, they have included it in the URL or inside an image. Others intentionally added characters such as dollar-signs and asterisks to avoid Facebook’s automated moderation.

The algorithm must be continually tweaked to accommodate users trying to sidestep it. If an algorithm amplifies misinformation while platform rules are written to slow the viral spread of that information, an unattended algorithm that can’t adapt will be at odds with those rules, creating an unwinnable battle for moderators.

Technology is neither a force for good or bad in the world. An algorithm, developed by accident or with little care, is most certainly going to lead astray. It must be tended.

Open gardens

“There are never purely technological solutions to societal problems.” — Molly White, Blockchain Solutionism

In technology, the walled garden is a platform where one vendor controls distribution. If you want to make an iPhone app, your only choice is for Apple to approve it and sell it in the App Store. If you want to send a tweet, your only choice is to register on Twitter's platform.

Walled gardens like the App Store are user-friendly and developer-hostile. They take power away from independent publishers and put it in the hands of gatekeepers. The problem is exclusivity: there is only one gate, and those stuck outside are unable to distribute the same content. You can make Android apps, but not iPhone apps. Nothing exists outside the walls that closely resembles what is inside.

Apple uses the gate of App Store review to collect a percentage of a developer’s revenue. In an internal email, Steve Jobs wrote that Apple could force developers to use their in-app purchase system:

The first step might be to say they must use our payment system for everything, including books (triggered by the newspapers and magazines). If they want to compare us to Android, let's force them to use our far superior payment system.

Twitter is also a walled garden. Like the App Store, it is a closed platform with proprietary formats and a limited API. The difference is that Twitter's garden is poorly curated and full of weeds. The walls are in such disrepair it's hard to even tell where they are.

Mike Monteiro emphasized this frustration in a post about the daunting, insurmountable problems facing Twitter’s leadership team. He talked about meeting in person with Jack Dorsey:

We discussed Twitter’s role in the world stage. And I admired his vision, but feared his approach. Jack, and to an extent Twitter’s pet porg Biz Stone, have always believed that absolute free speech is the answer. They’re blind to the voices silenced by hate and intimidation. The voices that need to be protected. But anyone who’s ever tended a garden knows that for the good stuff to grow, you have to deal with the bad stuff. You can’t let the weeds choke the vegetables.

The issue isn’t that Twitter doesn’t care. It’s instead a design flaw in the platform. Because tweets don’t exist outside of Twitter, when you’re banned from Twitter, you need to start over with a new format or on a new social network. For this reason, and because their business depends on a large user base, Twitter is hesitant to throw anyone off their service. They’re unwilling to tend the garden for fear of pulling too many weeds.

It doesn't matter who is guarding the walled garden's gate if increasingly no one wants to go inside. So there's a better word than "gatekeeper" to describe what we're really after in building a great community-focused platform. It's "curator". Someone who is responsible for maintaining the best experience for users.

The answer to a walled garden is not to create a platform without rules. It's not outsourcing decisions to algorithms, with recommended users and topics that can be gamed or lead new users astray. That's not enough for the challenges brought to us by massive, ad-based social networks, where fake news and hate can spread quickly.

We need a new approach. Not controlled only by algorithms, but also not a walled garden that limits distribution of content. We need a system that prioritizes curation while preserving the freedom to publish outside of silos, with APIs based on the IndieWeb that are open by default instead of locked down with developer registration.

I think of this as an open garden. It's an open platform that also cares deeply about maintaining a healthy environment. Outside of the garden, the soil is the same and the same plants can grow, and you are free to copy flowers and trees from inside the garden and cultivate them yourself or let them grow wild. But inside is well-curated. Inside strives to be a high quality, safe environment.

In my Kickstarter video for Micro.blog, I talked about this for social networking and blogs:

If we start to separate the publishing from the social network, it unlocks something. It empowers writers to feel like they own their work, even if that's short posts. And it frees social networks to build a safe community, without worrying about censorship, because no matter what the networks do you can always post to a site with your name on it.

The fundamental problem in walled gardens like the App Store and Twitter is that they are closed. If they open up, they could in fact double-down on curation. There would be no need to loosen their quality standards because there's an easy path to publishing without review by using the open web.

I first wrote about this in 2014 in the context of learning from Beats Music. For Apple to deemphasize their algorithmic top 200 lists in the App Store they would need to focus on curation. Here's what Beats was doing:

Instead, they have a bunch of people — musicians and writers who deeply care about music — curating playlists. The top 25 playlists in a genre are so buried in the app that I had to search them out just to write this blog post, because they seem to carry no more weight than any other playlist. Much more common are playlists like “our top 20 of 2013”. That’s not a best-selling list; it’s based on real people’s favorites.

After Apple acquired Beats Music, they brought some of those curation lessons over to Apple Music, and later redesigned the App Store with more featured apps and stories. There is only so much they can do, because the foundation of a walled garden is difficult to change.

Seth Godin highlights how the incentives to curate are not well-aligned with Apple's business:

Apple gets some zing for a recommended podcast now and then, or for a heavily promoted record, but the same rule is generally true with them–98% of all their content is driven by the algorithm, not a human with something at stake. They don’t care which record you pay for, as long as you pay for something.

Twitter has likewise created an environment that ties their hands on curation, with discovery driven by trending hashtags and retweets. And for each rare time a popular account is banned for hate speech, there are still thousands of trolls who are making life miserable for users. Because there is no alternative, Twitter must allow nearly all content on their service. Because it exists apart from the open web, Twitter must give its worst users too much leeway before banning their account.

The open garden solves this problem. It's the same web inside a platform like Micro.blog as on the rest of the internet. By adopting open standards but also drawing a line across which we can apply community rules, it's possible to build features that protect users.

Even the bigger platforms are starting to realize this. Adam Mosseri, head of Instagram, talked about the added flexibility from open standards like ActivityPub when a user leaves or is de-platformed from Threads:

If you’re wondering why this matters, here’s a reason: you may one day end up leaving Threads, or, hopefully not, end up de-platformed. If that ever happens, you should be able to take your audience with you to another server. Being open can enable that.

And with blogs we can go further than taking your followers with you, as Mastodon supports with account migration, by also allowing posts and your identity to move between platforms.

By encouraging the use of personal domain names, when Micro.blog does need to ask a member of the community to leave for violating our guidelines, that blogger can take their domain name and content with them, continuing to post to their own blog but blocked from interfering with the community. The curators of the platform have more freedom to block harassing posts because those problematic users can retreat to their own web site and leave everyone else in the community alone.

To summarize:

		Open gardens have curators instead of gatekeepers.

		Open gardens use standards so that the same formats exist inside and outside the platform.

This is only possible by embracing the open web. I believe it's an important part of the way forward for all great platforms.

Discovery

“Understand well as I may, my comprehension can only be an infinitesimal fraction of all I want to understand.” — Ada Lovelace

When a platform is just getting started, it’s common to have a “global” timeline: a section of the app that shows all recent posts. New users can browse the timeline to get a sense of what people are posting. If something looks interesting, they can follow that person. It’s a useful discovery tool.

Eventually the platform outgrows the global timeline. If the platform is successful, there will quickly be too many posts to keep up with, so it becomes a burden instead of useful. The timeline will have to be just a snapshot of random posts, and later disappear altogether.

There’s also the issue of clutter. Without filtering, the global timeline might contain test posts and other garbage that isn’t particularly welcoming to new users. It might expose hateful or harassing posts.

With Micro.blog we tried something different. Instead of showing all new posts, the Discover section is a curated timeline. We manually include posts in the timeline to give new users a slice of the activity on Micro.blog. It’s a place to find posts and users to follow.

Would a curated timeline scale to the number of tweets that Twitter processes every minute? No, but we never want to be that big, because big platforms are inherently part of the problem, no matter the best intentions of their founders.

Small companies like Micro.blog can do take a different approach that wouldn’t work for others. It’s something that Paul Graham captured in his famous essay Do Things That Don’t Scale, reminding early startups that they don’t need to build something that can reach scale right away, because chances are they’ll never get very big:

Tim Cook doesn't send you a hand-written note after you buy a laptop. He can't. But you can. That's one advantage of being small: you can provide a level of service no big company can.

In her post about how we curate Discover, Jean underscored this point that we do this by hand:

You control the posts on your own blog, and when you choose to follow someone, you see all of their own posts in the timeline. But for Discover we want to provide an easy-to-skim cross section of posts, so the culling is done by hand: no algorithm, no upvoting, no promotions.

Instagram also had an early focus on manual curation, featuring photographers that they wanted to highlight on the platform. Instead of any random junk picked by an algorithm because it was popular, curation by the Instagram team set the tone, helping inspire what kind of photos would be posted by others.

As Sarah Frier wrote in No Filter:

Because Instagram didn’t have an algorithm or any way to re-share photos, there was no natural way for content to go viral. So Instagram employees had the opportunity to decide for themselves what kind of user behavior to reward, handpicking interesting profiles to highlight on their company blog.

It's an approach that more platforms will return to as they become overwhelmed with the viral spread of the wrong types of posts. They don't want to be known for misinformation and hate speech.

Ben Thompson wrote about this on Stratechery, that users are not guaranteed promotion on social networks:

There is no right to be promoted, by individuals or by algorithms; on the contrary there is the most responsibility to moderate what is promoted. This is where Facebook and YouTube deserve the most scrutiny.

Micro.blog doesn't have special support for hashtags. It doesn't automatically link them. There's no global search yet. While Micro.blog users can include hashtags anyway, especially if they are cross-posting to Twitter, I've found that the timeline is much cleaner and readable without hashtags.

I'm not saying we'll never have hashtags. But I'm not in a particular hurry to introduce native support for them. (Once a feature is added, it can't easily be taken back. So we try to be deliberate in everything we do.)

Hashtags and Twitter trends go together. They can be a powerful way to organize people and topics together across followers. But they can also be gamed, with troublemakers using popular hashtags to hijack your search results for their own promotion or unrelated ranting.

It's the organizational and discovery aspect of hashtags that I most wanted to bring to Micro.blog. At the beginning of 2018, there were several discussions on Micro.blog about book clubs and reading, and this seemed like a perfect topic to experiment with. I've also noticed that people love to include an emoji in their microblog post as a kind of theme indicator — everything from 📚 to 🏀.

So we introduced a search collection using emoji, starting with books. Just include 📚 with your microblog text about a book you're reading or related topic, and your post will automatically be collected on /discover/books. There's also an emoji link at the top of the Discover section in the iOS and Mac apps.

People liked this enough that we started to generalize it and surface other topics. There are dozens of new emoji that Micro.blog tracks, like 🧶, ☕️, or 🏳️‍🌈. There is a community page maintained by Jason Burk with suggestions for new emoji that Micro.blog should support.

There is a bit of a chicken-and-egg problem with some less common emoji. Tagmoji in Micro.blog should reflect what emoji are actually being used, but sometimes it helps to add a tagmoji to Discover first, as a bootstrap to get more people to use it.

This splits off some discussions from the main Discover section, making it cleaner. It’s how we can scale the curated parts. There could be teams of curators who are only focused on their own section, so the task of keeping an eye on Micro.blog never feels overwhelming.

The tagmoji for 📷 is special. It doesn’t automatically collect any post that uses the 📷 emoji. That would be too limiting, when there’s already a good way to know if something contains a photo: the img tag.

However, we don’t want to include every image in 📷 automatically. There could be sensitive photos that would be shocking and not all-ages appropriate. There could be many screenshots and other non-photos. While including some of those is good, most of the photos should be actual photos. They should inspire.

So like the main Discover timeline, 📷 is hand-curated. It is a parallel collection to Discover, with some of the same posts. But it can contain many more photos than Discover, since it’s better for Discover to have a mix of both photos and text microblog posts.

We can also present the photos in new ways. On the web in Micro.blog, there’s an option to show a grid of photos:

[image: Screenshot of Sunlit photos grid]

Sunlit, our companion iOS app for photos, can also pull from the photos feed. It uses this for the Discover tab inside the app.

Mastodon also has limited search. Mastodon prevents full-text search: Explained on Twitter:

Prevent harmful behaviours like namesearching or finding people to harrass based on keywords. If you want your post to be found based on keywords, you use a hashtag.

Mastodon still has a global timeline. But you have to accidentally find the posts instead of looking for them.

Instagram disabled the recent hashtags view leading up to an election, to prevent misinformation from spreading quickly. They said:

Starting today, for people in the U.S. we will temporarily remove the “Recent” tab from hashtag pages. We’re doing this to reduce the real-time spread of potentially harmful content that could pop up around the election.

Because there would be no recent unfiltered posts where anything can surface, only the top posts that have been reviewed by Instagram would appear for the hashtag. It is a more curated solution, where posts are reviewed before they appear instead of after, when it might be too late to fact-check a post.

In an interview with Kara Swisher for the Sway podcast, Snapchat founder Evan Spiegel talked about the concern that harmful videos might go viral. They focused on building a platform that would allow human curation of viral videos because those videos would reach as many people:

And on the other hand, with broadcast content, the government has applied a much higher standard to what you’re allowed to broadcast on television, for example. And so, we’ve built that into our platform with our content guidelines. And that’s why, as I mentioned, we were concerned about a platform that essentially allows videos to go viral. And we really had to build a lot of this moderation infrastructure where humans actually review the content that’s reaching a large audience.

It’s okay if every platform has a different approach to curation. Some platforms like Micro.blog make it difficult for posts to spread virally, and others like Snapchat or Facebook may catch the viral spread and throttle it down if it’s harmful content or misinformation. What is not okay is to have no curation at all, with popular trending keywords and posts spreading like fire, fueled by algorithms unchecked.

Popularity contests

“They've got you looking for any flaw, that after a while that's all you see. For what it's worth, I'm here to tell you that it is possible.” — Vincent from Gattaca

I wasn’t sure when first introducing Micro.blog without any follower counts whether it would work. Twitter has follower counts prominently shown on a user profile, and every Twitter-like service from Pownce to Mastodon to Threads has copied it.

But I had a theory that showing these counts brought an extra level of judgement. Does someone have only a few followers? Our first reaction is that maybe that person isn’t very interesting or worth following. But there are a lot of reasons for the number of followers, such as how long someone has been on the service.

I was relieved that it worked. Many users appreciated that they could choose to follow new users based on their interest in that user’s posts alone, not because they were in a popular list that everyone sees.

An article for Wired by Felix Salmon covered the influence of Twitter power users, celebrities who have accumulated massive followings:

Twitter is becoming increasingly concentrated on a tiny core of power users. It’s less and less a distributed mode of many-to-many communication, and more and more a broadcasting hub for the elite—a highly unequal place where their least-considered, Ambien-addled opinions get amplified to a global audience of millions.

The founders of Twitter courted celebrities early in the company’s history. Snoop Dog visited the Twitter HQ. Obama visited too. It was like a measure of success, giving validity to the service.

But increasingly users are realizing that they are happier to ignore follower counts. Rather than new year resolutions, Aleen Simms had a list of liberations for 2018: things to let go of and not worry about. In particular I like this one about not looking at numbers:

Twitter followers, podcast download stats, blog post views, the scale, whatever. Life isn’t a video game. Happiness doesn’t have a numerical value attached to it.

Heather Armstrong was a pioneering blogger who struggled with the pressure that came from her success, and later how to adjust when influencers moved from blogs to Instagram and TikTok. In 2015 she wrote about the mental impact on influencers and chasing like counts:

I also see other people online who are headed straight into the arms of the monster who crushed that joy, headed for panic and frustration and burnout because the living of their life has been commodified. The living of their life has been filtered down into the number of unique visitors.

Now this is backed up by research too. In studies led by The University of Texas, researchers collected data on how receiving fewer “likes” affected adolescents emotionally:

Study participants helped test drive a new program that allowed them to create a profile and interact with same-age peers by viewing and “liking” one another’s profiles. Likes received were tallied, and a ranking of the various profiles displayed them in order of most to least liked. In actuality, likes were assigned by computer scripts. Participants were randomly assigned to receive either few likes or many likes relative to the other displayed profiles. In a post-task questionnaire, students in the fewer likes group reported more feelings of rejections and other negative emotions than those who received more likes.

It mirrors a philosophy we have with Micro.blog to launch without follower counts or public likes. Follower counts are not very useful for a new platform. They add anxiety and unavoidably lead to value judgements when considering whether to follow someone, instead of letting the quality of someone's writing and photos speak for itself.

Andy Flisher posted to his microblog about how Facebook takes the opposite approach, encouraging the numbers game:

Facebook has genuinely ‘encouraged’ me to get more likes for my birthday than I did last year! 🤯 No wonder the youngsters are growing up so needy for likes and follows, not healthy 🙁

A social network doesn't have to be like this. Micro.blog is a way to post to a web site that you control, and a place to discover and talk with other members of the community. Micro.blog is not a popularity contest.

This approach may become mainstream instead of the exception. The photo-sharing iOS app Glass launched in 2021 without public likes. In an interview with Om Malik, Glass co-founder Tom Watson said:

We’ve intentionally avoided any public counts. We don’t want Glass ever to become a popularity contest. We’re not home for influencers. We are a home for photographers.

Glass can do this because they are a paid subscription service. They need to make customers happy, but don’t need to focus on the kind of increased engagement that ad-based companies are always chasing.

Popularity contests are also easy to game. Researchers from the NATO Strategic Communications Center of Excellence ran a series of experiments to buy likes, comments, and clicks on social media posts. They paid companies in Russia and Europe hundreds of dollars to buy thousands of likes and followers, writing up a report on the results:

But the report also brings renewed attention to an often overlooked vulnerability for internet platforms: companies that sell clicks, likes and comments on social media networks. Many of the companies are in Russia, according to the researchers. Because the social networks’ software ranks posts in part by the amount of engagement they generate, the paid activity can lead to more prominent positions.

The researchers then actively notified the social media companies about the fake likes and tracked what action the tech companies took, if any. Most fake likes and accounts used for the experiment remained online a month after they were reported.

It is very difficult for a massive platform like Facebook or Twitter to catch everything. Instead of trying to "fix" fake likes that are purchased, the solution is to remove the reason someone would purchase likes to begin with. If like counts weren't featured so prominently and used for surfacing content, there would be no incentive to try to game the system.

Instagram is also now testing hiding “likes”. Wired covered this with comments from the head of Instagram, Adam Mosseri:

Although Mosseri was careful to note that “bullying predates Instagram" and the internet, he did mention further measures that the platform is taking to improve the mental and emotional health of its users. The company is working with therapists and engineers to develop other tools to prevent and de-escalate bullying on the platform, such as figuring out a way to make users take a break when they need it.

This is good news and undoubtedly worthwhile for Instagram to experiment with. Helping users “take a break” seems at odds with Facebook’s business of ads, fueled by measuring engagement and daily active users, but to Facebook’s credit they’ve rolled this setting out in both Instagram and Threads.

Tied in with popularity contests and follower counts is trending posts. Not just specific users or specific posts that are popular, but entire groups of related posts.

Brian Feldman, in an article for New York Magazine written after the Parkland shooting,

The first problem with “trending” is that it selects and highlights content with no eye toward accuracy, or quality. Automated trending systems are not equipped to make judgments; they can determine if things are being shared, but they cannot determine whether that content should be shared further.

YouTube’s trending algorithm surfaced a right-wing conspiracy theory video that was seen by hundreds of thousands of people before YouTube moderators took it down. Without the trending algorithm accelerating its spread, it would have been seen by fewer people.

Avoiding the numbers game in Micro.blog has also shined a light on other parts of the UI that can be rethought. Wherever there's a number in the UI is an opportunity to question why it's there.

Sometimes there's a good reason. Unlike the count of people who follow you, which isn’t something you can control, how many people you follow is up to you, so there's no harm in showing that number. But by paying attention to it, we found that even that could be deemphasized and improved.

If someone was following 500 people on Micro.blog, it used to include a “following 500” link in that persons profile. Clicking it would show a list of everyone that person was following.

But what someone is really after is to discover new people to follow. If out of that list of 500 people, you're already following 400 of them, wading through the full list is a waste of time. So now the link shows “100 users you aren't following”. It deemphasizes the total count and instead makes the feature much more useful.

The Atlantic, quoting Ben Grosser, after news that Jack Dorsey is reevaluating whether Twitter should even have likes:

“Part of what’s happening in spread of disinformation is that people can essentially repeat what someone else said and spread it to the world, the retweet has an effect well beyond the Like in that regard,” he said. Grosser also indicated that removing just the like button would only make the retweet more powerful. “I fear that if they remove the Like button the fact that there are other indicators that include metrics will just compel users to use those other indicators,” Grosser said.

Removing likes and retweets is of course old news to anyone who has been on Micro.blog. I wrote 2 years ago about the potential harm of retweets. It's a common theme in the talks I've given and in other blog posts since.

When I first started rolling out Micro.blog to early supporters, not having public likes, retweets, or follower counts was a kind of controversial, risky decision. Now it's almost boring. We're in the middle of two complementary transitions: a move away from massive social networks, and smaller platforms providing the flexibility to remove features and algorithms in service to the community.

We don’t algorithmically recommend users to follow, because that will usually just increase their popularity, giving them an artificially inflated reach compared to a new user. So what do we do instead? There’s actually no shortage of ideas to help highlight users on Micro.blog when you think about human creation instead of algorithms.

Originally inspired by the "Follow Friday" tradition on Twitter, where Twitter users @-mention other users to follow, our community manager Jean MacDonald proposed Micro Monday. The idea was to encourage user recommendations with some context about why, not just a list of accounts to follow:

We suggest you make just one recommendation per week. Include a link to the account micro.blog/username to make it easy for people to click and follow, whether they see your recommendation on the Micro.blog timeline or on your blog. We highly recommend you give a short description of the reason for your recommendation.

Micro Monday has evolved into 3 separate things with the same name, each another way to promote what users are doing on Micro.blog:

		Micro Monday user recommendations, where people can recommend someone to follow.

		The podcast, where Jean interviews a member of the community about how they learned about Micro.blog and what they blog about.

		The weekly email newsletter, where we link to the latest Micro.blog news and quotes from posts on Micro.blog.

We don't do all of these every week, but when we do they serve as another human-curated view into activity on Micro.blog. It helps give recommendations more personal touch.

Any post that mentions Micro Monday is also collected in a special section in Discover. This is a good way for brand new users to scroll back through recommendations. And there have been similar community efforts such as as Smokey's This Week in Micro.blog post.

Jean also brings people together around shared interests by starting “roll calls” on certain topics. People can reply if they are interested, and then by viewing the conversation you essentially get a list of users to consider following, people who might share some of the same interests as you.

It's often said that the IndieWeb isn't about protocols and tools. It's about people. It's about personal web sites and the interaction between people writing on their own blogs.

Welcoming new users by hand will always feel more meaningful than an algorithmic suggested users list. No one wants to talk to a computer.

Banning users

"In terms of sheer engagement, objectionable content is the most popular.” — Why The IndieWeb?

As we approached the end of 2018, Micro.blog was still gaining traction. We were rolling out new features every week. We had the Micro Monday podcast. There was still plenty to do, but it felt like everything was falling into place.

And then I got this mention on Twitter that made my heart sink:

Hey @microdotblog , what's your position on white supremacists using your tools? Because i just found one, and he's got a paid account.

I followed up with the Twitter user who had reported this to get the details. It was true. We had noticed this Micro.blog user when they first created their account, and it seemed strange, but after an initial post they had never posted again. Without the context that this Twitter user provided, we didn't know if action was necessary.

Hate speech is not tolerated on Micro.blog. I first checked if this user had replied or harassed any other Micro.blog users. They had not. In fact, no one was following this user. Our approach of making it difficult to accidentally stumble upon a random user had worked.

We draw a line between your blog and how it affects other users in the community. This is the premise behind open gardens. Your blog is your own, at your own domain name, and if it’s not interfering with other users — by harassing or spamming them — then we leave your blog alone. But even with this principle on the separation between your blog and the community, some content can’t be allowed. White supremacy has no place on Micro.blog.

We are small enough that we can at least skim through many posts that come through Micro.blog. Spammers often create free accounts. They use the trial to post advertisements for herbal supplements or dating services. Those are easy to find, and because these “users” aren’t going to pay even $5 to keep posting, no one usually notices. We can delete their account or they fade away on their own.

Reporting is valuable when we miss something. It’s not the first line of defense, but as in the case of the white supremacist reported from Twitter, user reporting can provide important context we might otherwise miss.

Most users are trying to do the right thing and sometimes just get carried away in a conversation. Passions are strong especially around political topics. In those cases, more could be done to help users take a break from the conversation, such as temporary pausing replies to let everyone cool down.

Cheryl Cicha of Iconfactory posted about an effort to introduce new emoji specifically for calling attention to potentially bullying behavior:

The goal was to create friendly, non-confrontational emoji that are easy to identify when seen in a timeline. They are intended to be used to let others, including friends, know they’ve overstepped or to help others identify people who behave badly on a regular basis.

This has a lot of potential. There's a place for privately reporting a user, especially someone who doesn't appear to care what other people think, but most people are trying to do the right thing and might just need a reminder.

On the other side are clearly fake accounts, set up to contribute to content farms or spam other users. At Micro.blog we've disabled thousands of these accounts, but we're a tiny platform compared to the task Facebook faces. CNN reported that Facebook has shut down billions of accounts:

So far this year, Facebook has shut down 5.4 billion fake accounts on its main platform, but millions likely remain, the social networking giant said Wednesday. That's compared to roughly 3.3 billion fake accounts removed in all of 2018.

In Micro.blog we can also hide or block individual replies from the timeline. This does not affect the user’s blog, where they can still display all their own replies, but if there is harassment or unwanted replies it can help prevent a conversation from turning more hateful. This is a feature we very rarely use.

Similarly, Twitter has experimented with letting users control whether replies are even allowed on their tweets, or to hide specific tweets in the conversation as we do in Micro.blog.

Andy Baio said on Twitter reacting to this feature:

Not mentioned here: if you hide a reply, Twitter will show a big modal pointing out that the author hid some replies, drawing way more attention than just leaving them alone.

This is like a smaller-scale version of the side effect when Trump’s tweets were banned, or Twitter preventing links to the New York Post article about Hunter Biden, but put in users’ hands. Sometimes it might be better to just quietly hide a reply from everyone but the reply’s author, letting the conversation wind down instead of escalate.

At the end of 2019, Jack Dorsey dropped a bombshell about a project Twitter would start exploring in 2020:

Twitter is funding a small independent team of up to five open source architects, engineers, and designers to develop an open and decentralized standard for social media. The goal is for Twitter to ultimately be a client of this standard.

I should have been excited about this, but instead my first reaction was frustration. Ten years after early Twitter employees like Blaine Cook and Alex Payne were pushing for a more open architecture, now Jack Dorsey realizes Twitter is too big and creates a team to work on... blockchain-based solutions?

Finally, new technologies have emerged to make a decentralized approach more viable. Blockchain points to a series of decentralized solutions for open and durable hosting, governance, and even monetization. Much work to be done, but the fundamentals are there.

Even with all the current excitement about the blockchain, for the web any technology with its roots in cryptocurrency may be a solution in search of a problem. Just as using Microformats was a simpler approach to metadata compared to RDF and the Semantic Web, more traditional web APIs are more than capable of undergirding the evolution of the web instead of crypto.

Anything the blockchain touches will have new complexity and energy resource trade offs. As Mastodon founder Eugen Rochko posted:

It's frustrating how cryptocurrency has poisoned all conversation about decentralization.

The first step for Twitter should be to check out the IndieWeb. There are people who have been thinking about and working toward more open social networks for years.

After a closer reading of Jack's tweets, though, my first interpretation wasn't quite right. Twitter isn't necessarily interested in decentralizing content or even identity on their platform. Why would they be? Their business is based around having all your tweets in one place.

Early in the thread, Jack hints at what Twitter is trying to do:

First, we’re facing entirely new challenges centralized solutions are struggling to meet. For instance, centralized enforcement of global policy to address abuse and misleading information is unlikely to scale over the long-term without placing far too much burden on people.

This "burden on people" is the resources it would take for Twitter to actively combat hate and abuse on their platform. See all the thousands of moderators that Facebook has hired.

Klint Finley at Wired wrote about how moving to a decentralized protocol like Mastodon’s ActivityPub could help Twitter in terms of moderation:

That approach gives individual communities more control over their experience and if adopted by Twitter would mean the company wouldn’t be the sole arbitrator of what can and can’t be seen online. But it doesn’t solve all the problems that big platform companies face. For example, quarantining problematic content doesn't address problems related to misinformation and disinformation.

Ben Thompson followed up on how it could narrow Twitter's focus:

A truly decentralized network would justify Twitter washing its hands of content moderation completely at the network level, while ramping it up at the app level.

If Twitter was hoping to outsource curation to shared protocols, it should have been in addition to — not a replacement for — the type of effort that Facebook is undertaking. I've outlined a better approach in the chapter on open gardens and in the conclusion to this book, but most IndieWeb-friendly solutions don't seem compatible with Twitter's current business.

Nathaniel Popper wrote an article in The New York Times about Jack Dorsey’s tweets and the reaction from others hoping to wave the blockchain into next-generation social networks:

Mr. Dorsey is following in the steps of the many cryptocurrency advocates who have argued that the underlying technology could be used to record all the users and activity on a social network, and to agree on a single set of rules for the network, without having any single company in charge. He said, though, that it would most likely take “many years.”

In the end, with the continued chaos of Elon Musk’s Twitter takeover, Jack Dorsey wrote a longer post outlining his thinking about moderation and new protocols. It built on his previous comments, but with seemingly more conviction that centralized moderation was not going to work, and that instead users should have in their hands new algorithms for shaping what content they want to see:

The biggest mistake I made was continuing to invest in building tools for us to manage the public conversation, versus building tools for the people using Twitter to easily manage it for themselves. This burdened the company with too much power, and opened us to significant outside pressure (such as advertising budgets). I generally think companies have become far too powerful, and that became completely clear to me with our suspension of Trump’s account.

Project Blue Sky, the effort to develop a new social media protocol that Jack Dorsey had helped get off the ground, had also published a specification for the AT Protocol. It prioritized a decentralized approach, similar to Mastodon’s ActivityPub, but contrary to the earlier suggestions about using crypto, blockchain is not part of the AT Protocol. It did put significant thought into identity and account portability:

The DNS handle is a user-facing identifier — it should be shown in UIs and promoted as a way to find users. Applications resolve handles to DIDs and then use the DID as the stable canonical identifier.

Using the @example.com DNS syntax matches Micro.blog’s own method to send an @-reply to other web sites. The AT Protocol then maps it to a more cryptic identifier — DID, or Decentralized Identifier — that the user does not need to see.

And meanwhile, we still have existing IndieWeb standards. Like the AT Protocol, the IndieWeb has always prioritized domain names. If the AT Protocol takes off, there could be a shared philosophy between it and the IndieWeb about using domain names for identity.

In 2018, Alex Jones and his conspiracy theory-fueled site Infowars finally ran up against several platform’s rules around hate speech. From The New York Times:

After weeks of criticism, YouTube, Facebook, Apple, and Spotify all acted to essentially erase many of his videos and posts from their services. In many cases, the companies are saying he violated their terms regarding hate speech and a number of other rules. Alex Jones today in his show dedicated nearly all four hours to what he called censorship of his platform.

As covered in previous chapters, this is not censorship. Banning Alex Jones limits his ability to use other platforms to amplify his message to followers, but he still had his own web site and podcast. Removing a podcast listing from Apple’s podcast directory (or from Spotify or Overcast) does not prevent a podcaster from broadcasting, because Apple does not host the podcast audio files directly. Jones would just need to do the extra work of getting his message out to followers on his own. Platforms have no obligation to help him.

Snap founder Evan Spiegel, in an interview with The Verge, talked about the confusion over free speech on private platforms:

I think the interesting thing is that we do seem to be in the middle of a very odd misunderstanding of the First Amendment, which is designed to protect individuals and businesses from the government. Companies can all decide whatever they want to put on their platforms. They’re well within their rights to do that as private businesses.

Private companies effectively can’t violate the First Amendment. One of Elon Musk’s early actions after taking over Twitter — publishing the so-called Twitter Files, a collection of internal documents — attempted to prove a sort of collusion between Twitter employees and Democrats, to limited success.

Apple also removed the Infowars app from the App Store. While Jones can still have his articles on his own web site, removing the iOS app is a little more tricky than removing a podcast, because there is no other way to distribute iOS apps directly. If Apple would open up iOS to side-loading, their job to curate the App Store becomes easier because developers have another path to direct distribution.

No chapter on banning users is complete without revisiting the elephant in the room: Donald J. Trump. For years, Twitter and Facebook defended their decision to keep Trump on their platforms, but that certainty from leadership kept getting chipped away at. First flagging Trump’s posts as inaccurate. Then limiting their ability to be retweeted and spread.

The reaction when Trump tweeted a journalists email address was typical of the baby steps to rein in Trump’s use of the platform to incite. Twitter locked his account until he removed tweet:

A Twitter spokesperson tells me that President Trump’s account was locked after he shared the NY Post columnist’s email address, and that to unlock his account, he had to agree to delete that tweet.

With the 2020 election, the momentum to de-platform Trump became too great to ignore. There was a tipping point where the threat of violence became inarguable. Attorney General Merrick Garland said in a 2021 announcement about countering domestic terrorism that the justice department is focused on violence, not on ideology. “We do not prosecute people for their beliefs.”

Social networks have a different role than the government. For hate speech that could amplify threats of violence, social networks do have a responsibility to stop online speech potentially bringing physical harm into the real world.

Casey Newton captured this shift against Trump in a post for his newsletter Platformer, written on January 6th, the day of the insurrection at the US Capitol. Casey had previously opposed Twitter de-platforming Trump, but he couldn’t defend that position any longer:

By inciting the violent occupation of the US Capitol, Trump has given up any legitimate claim to power. In 14 days, barring catastrophe, he will be out of office. The only question is how much damage he will do in the meantime — and we know, based on long experience, that his Twitter and Facebook accounts will be among his primary weapons.

The next day, Mark Zuckerberg announced that the temporary block on Trump’s account would be extended indefinitely. Mark outlined why the insurrection was the clear turning point to take action because amplified political speech had spread to violence:

Over the last several years, we have allowed President Trump to use our platform consistent with our own rules, at times removing content or labeling his posts when they violate our policies. We did this because we believe that the public has a right to the broadest possible access to political speech, even controversial speech. But the current context is now fundamentally different, involving use of our platform to incite violent insurrection against a democratically elected government.

We believe the risks of allowing the President to continue to use our service during this period are simply too great. Therefore, we are extending the block we have placed on his Facebook and Instagram accounts indefinitely and for at least the next two weeks until the peaceful transition of power is complete.

When the narrative flipped against Trump, the changes at the big platforms snowballed. Alex Jones’s ban from YouTube earlier was almost a trial run. Trump was banned from Facebook, Instagram, and Twitter. The entire iOS app Parler was banned from the App Store. Conservatives often talk of free speech, but no one is guaranteed amplification.

Aza Raskin, co-founder of the Center for Humane Technology, has spoken about the difference between speech and reach. “We are not guaranteed the right to freedom of reach,” he said. Reach is amplification, usually at a higher level of the internet stack and not a foundational level preventing someone from speaking at all.

We use lower-level services like Amazon Web Services and Linode as if they are indistinguishable from having our own servers at a data center now, so I still think they are probably the wrong part of the stack to ban companies unless laws are broken. But it would be less of a gray area if AWS wasn’t so huge.

At the very least, it’s important to acknowledge that AWS and Twitter are completely different types of services. Twitter started taking moderation seriously way too late, and now it feels like the momentum has spilled over into every type of service, maybe too quickly, as no major platform wants to be the last one to ban Trump.

Twitter and Facebook organized safety councils to guide their actions, attempting to have independent oversight especially when banning high-profile figures like Trump. When Elon Musk acquired Twitter, chaos unfolded, and the Trust and Safety Council was disbanded. In a statement, the previous members of the council wrote:

Over recent weeks, we have been gravely concerned by Twitter leadership’s apparent disregard for the due process and investment of resources required for effective content moderation.

This echoed the feeling among many Twitter users that Elon Musk was making things up as he went along, acting largely on impulse, without a coherent strategy.

About a week after the insurrection, Jack Dorsey used a Twitter thread to explore his thoughts about banning Trump. In the tweets he seems clearly hesitant to ban, and perhaps with a different CEO at Twitter the ban would’ve come earlier. He again mentions open standards and crypto as possible long-term solutions, but lays the blame with how Twitter has managed their platform today, irrespective of what might be possible later:

having to ban an account has real and significant ramifications. While there are clear and obvious exceptions, I feel a ban is a failure of ours ultimately to promote healthy conversation.

He’s right, but only partly. It is a failure of the community. It does have ramifications. But some of those ramifications are baked into the Twitter platform through design choices. Banning would not be so severe if Twitter was intertwined more with the open web and blogs, where moving content while retaining ownership is a matter of routine.

Interview with Jean MacDonald

Halfway through the Kickstarter campaign for Micro.blog, I posted a stretch goal to backers:

Your web site is your own, where you have the freedom to write about whatever you want, but a service like Micro.blog has a responsibility to build a safe community for its users.

This is a core principle of the service. That we can draw a line between the content on your own site and the community, and when the line is crossed with @-replies, we can step in.

After I posted this, I got an email from Jean MacDonald:

I am very intrigued with the concept of a community manager who manages the line between openness and harassment. If there is anything I can do to help you reach your stretch goal and hire this person, please let me know, because I want to see this happen regardless of who fills the position!

When I read this, I was so relieved. I had been nervous about launching the stretch goal. The Kickstarter campaign was going great, so why rock the boat with something new? Also, I didn’t actually know how to find the right person. I just knew that I needed them and that curation and keeping an eye on the community would be important.

I've now been working with Jean for over 3 years, and in that time we've launched new features and helped the community grow. I sat down with Jean to talk about the progress so far.

This is an edited portion of the full interview, which is online and also in podcast form.

Manton: So before Micro.blog... I know you had blogged off and on a while back. What did your blog look like and had you been blogging recently, or was it kind of needing to be dusted off?

Jean: I started on the internet in the 90s as a web designer. So I always wanted to have some kind of blog, but it was before WordPress and I wasn't super technical, like backend oriented. So I thought, well, if I have a blog, I'm going to have to redesign these pages every time I add something new. And then I got on Twitter pretty much early on. And the next thing I knew, I wasn't really that interested in blogging anymore.

Jean: I started a blog in 2007 or 2008, which was my version of a parenting blog, but for aunts like myself, somebody with no kids. And so focusing on all the fun stuff that aunts and uncles get to do and not really worrying about any of the financial or, you know, health or nutrition things, they don't have to worry about. So that was pretty fun. But I think being on Twitter siphoned off some of my interest in posting on my own blog for sure.

Manton: In that early time when we were emailing about this community manager job, the role I think was admittedly kind of vague when you first signed up. [laughter] What were your early expectations? What did you think it would be like?

Jean: I thought it was going to be more time spent being the Judge Judy of the community where people would be doing things that we thought were against the guidelines, or they would be potentially harassing other members. And I would have to step in and make a judgment call. I think what you said at the beginning was this person would be very involved in writing the community guidelines and then also making sure that any harassment that didn't get screened out by automated systems was caught early and dealt with early. And so I actually thought it was going to be a more combat oriented job than it has turned out to be, so far. Knock on wood.

Manton: We've been really lucky, I think, that the community is fantastic. There have been been issues that come up that need to be discussed and judgment calls need to be made. And I'm sure that will continue to happen as we grow. So what you imagine may still come to pass. [laughter]

Manton: What did you find yourself thinking about and how you interacted with people in the community first? If it wasn't the, "I'm going to make a judgment call and this person needs to go", what was the experience like?

Jean: It wasn't very different from other social media type experiences, except it had some some pretty definite and maybe unexpected to new users things that you couldn't do or wouldn't do. The truth is, I didn't totally understand Micro.blog in the beginning. I thought it was supposed to be like just like Twitter, a Twitter thing that would would be able to be cross-referenced, cross-posted wherever and that you would be able to just be on Micro.blog but you could still keep things on Twitter going, and that's all it was. It didn't totally sink in until I had been working on this for probably a couple months that this was a blogging platform. And when you use the app or the web site to put up your little short post, your tweet-like micro posts, all of those were being collected and published on a blog site that was yours. That was literally like the lightbulb going off. And I'm like, "okay, now I get it." So a lot of the early stuff was me trying to help people when I didn't totally understand it myself.

Jean: And I think there were a lot of questions. You know, people hadn't quite figured it out themselves. And so it was more being a a resource in the community. And a lot of that, you know, resource was like, "I will ask Manton about that."

Manton: And early on, I don't even remember when we built the help site, but pretty sure it wasn't there at the beginning.

Jean: Certainly not in the form it's in now. It's been a really interesting process, and it's a process I have been through before working with software developers who have really cool software, that is really useful and really great, except it's hard to explain it in in one sentence. And I think for this, what we're doing is people may think, "Well, I'm okay on Twitter, I don't need another social network." And that's really answering the wrong question. The question is, would you like to have your work in a site you control, whether it's short or long posts? And we didn't have a long post in the beginning either. As things have been built out that has helped people to understand what they would do. But yeah, in the beginning, I think I was just trying to figure out what people were doing and for myself as well.

Manton: So we didn't have long posts in the early days of Micro.blog and we also didn't have podcasts. And one of the great things that you work on that I really love is the Micro Monday podcast that we're talking on right now. What was the inspiration for that podcast?

Jean: I think it was probably a little before we started doing Micro Monday that Brent Simmons was doing the Omni Group podcast, which I thought was cool. Because there's always this feeling like if you're going to do a podcast, you've gotta have a big audience, you know, like, why would you do it? But what I'd learned, starting with Micro Monday definitely is like: doing a podcast for a specific audience that will appreciate it is as rewarding, maybe not necessarily financially, but it's just rewarding to know that people enjoy what you're doing. Certainly in our community, it's really made a difference, I think, for people to figure out they can learn about people they want to follow because you can listen to them and you can say, "oh yeah, I wouldn't mind hearing what this person is up to on a regular basis." That definitely makes the users of Micro.blog who come on the podcast are now more fully fleshed out as human beings and not just short 280-character or less posts.

Manton: Yeah, it was a great kind of proof of concept for can we even hosts podcasts? So technically it was great, but even more than that... Getting a little insight into who people are and what their thoughts are on the platform or blogging. I really loved how that's worked out.

Manton: You actually had a blog post recently about starting small and appreciating micro things. I have it here in front of me. You said:

Ever since I became the community manager for Micro.blog, I've developed an appreciation for the beauty of going "micro": microposts, microcasts, micro meetups, microcosms of interesting humans interacting online on a human scale.

Manton: I thought that was really great. And it was kind of a nice reminder of you can start small with something and it can turn into something big. And I think the podcast is like that. When you look at so many episodes also like going back it has a nice history of all those members of the community.

Jean: Yeah, it's interesting. Actually back when I was in my early 20s, I worked as a secretary in the history department at the University of North Carolina. And next door to my office was the Southern Oral History Program, which was at that time — so we're gone back, you know, early 80s — was a new idea to do oral history, because most history up until that point was being written based on archives of documents. And that meant if you didn't have something that got archived, then you weren't in the history, right? And so the oral history program was actually quite famous there at UNC.

Jean: Their primary program at that time was going out and interviewing mill workers in North Carolina. Like cotton mill workers, that was very much a thing. Learning how they lived, how the jobs went, how all that kind of stuff that you wouldn't get out of going into the state archives to look at the records of the mill or something like that. So I gained an appreciation for oral history. And I think, while I don't do it in any kind of... I don't have a methodology for this — I'm not trying to earn my PhD in anything — I just like that we're capturing a moment and a slice of time that in the evolution of the internet and internet communities.

Manton: We've had a few in-person meetups. And you mentioned that in that post too, micro meetups. How has that been, talking to either members of the community or people who are just learning about Micro.blog? How does that compare to like talking to people on the podcast?

Jean: That's an interesting question. For talking to somebody on the podcast, I get like 20 minutes, 30 minutes, at least, talking to somebody one on one. And for example, when we have meetups at Apple's Worldwide Developers Conference there's a lot of people and I want to talk to all of them. So people who are on Micro.blog seeing other people... When we do the name tags, I make the name tags myself and I put people's usernames on them so that people can say, "oh, so you're that person." And it's pretty cool.

Manton: The podcast is definitely one way to highlight people in the community. And we also have the Discover section, which has evolved, but it's kind of settled into something I really like right now, which is highlighting posts that are coming from users in Micro.blog. Not actually highlighting a person specifically, but just posts. So it's kind of a curated timeline of just like a little snapshot of what is going on in Micro.blog. How do you feel about the way that's going and how that should evolve or how we can grow it or what more we can do with that?

Jean: Generally, I feel it's going pretty well. It is hand-curated by myself and you. And so there are some limitations there. Eventually that's not going to be the way we do it forever. It's a good place to find the people who post their photo first Micro.blog post. We try to make sure if there's somebody puts something up that's anything more than just like "hi". So if they make some effort, either they've put in their photo and their bio, like a way to know who they are. If they post something in the vein of "Hello World", we add that to Discover, because that's the idea for people. They want to know who's new and whether they're new people to follow.

Jean: It's been very important for us because what we don't have, that say Twitter has, is we have no algorithms. We have no recommendation engine. We're not going to pop things into your timeline and say, "here's some people you should follow!" Your timeline is your timeline, in chronological order, of the people you follow. And that's the way it should be. But if you want to dip into what else is out there, going to Discover is a way to do that.

Jean: We want to bring in more community curators for sure as the platform grows and the volume gets bigger. That's going to be important. And. That's the main thing that I can imagine changing over time. I think we could probably make the specific categories under tagmojis — so under the emoji tags that people have used for certain categories that we've been following — we could eventually find a better way to promote those to people because they're a little easy to overlook. Maybe eventually we'll have some specialized timelines that people in a certain interest group or whatever might curate. I don't know. But the bigger we get, the more important it is to make it easy for people to find their niches.

Manton: I was thinking back to how the platform has changed. And one of the things we haven't touched on, but it reminded me when you talked about there's no algorithm that will recommend who you should follow is that we've tried to get away from the popularity contest kind of aspects of other social networks. There's never been "like" counts and that sort of thing. And I wasn't sure at the beginning if we would be able to stick with that, because it was kind of unusual for a social network. What did you think, if you can kind of go back a couple years, that we didn't have those?

Jean: Well, I remember that I was campaigning for some of those features. [laughter] That was before it totally made sense to me. But not being able to see who's following you is definitely a thing you have to get used to.

Jean: Back then, yeah, I was like, well, I wanted it to be like Twitter, but better. In my mind, meaning: we have all the features of Twitter. You had thought a lot of this through in a way that I had not. And over time, I became a fan of how we do it. If you don't like how we do it, you've probably not hung around terribly long. So the people who are there are all discovering a different way of interacting in social media. And, you know, not having likes is very hard for people too because there's a lot to like on Micro.blog. And it would be so easy if there was a little thing we could click to say, "I saw that, you know. I see you, I heard you", whatever. But we've stuck with that. And what ends up being ironic is how other platforms are saying they're gonna get rid of likes. And it's like, yep, okay then.

Jean: Sometimes I'll just post one emoji as a reply to somebody, usually somebody that I know and I've interacted with and they know that I'm not blowing them off with just one emoji. But I reach out to people and say "that is really cool" or "I really like the work you've done here" or "you raised interesting questions". It takes a few seconds longer than clicking the like button. But it can lead to some interesting conversations and I would say friendships. I feel a lot of Micro.blog friendliness throughout that I maybe wasn't expecting, since I was originally expecting to have to fight with everybody. [laughter]

Manton: Yeah, and I think there's more we can do. Like your example of just sending someone emoji or a quick reply. I think that we can experiment with making that easier or encouraging that even more, especially for people who are clicking the favorite button right now, thinking it does something to notify the other person, which it doesn't. And I know Instagram has experimented with quick emoji reactions also, and Slack has a similar thing. I think there's more we can do, but there is something about actually taking the time to reply to someone that is meaningful. You're being deliberate about telling someone, "that's a great photo you took." And that's something I didn't expect and I'm really happy about. I thought there was something to this idea of not having that how many followers you have because of the pressure of it. And just kind of like some people are more popular than other people and like judging people based on how many... I knew there was something that we wanted to avoid with that. But the fact that it also encourages conversations in some cases is a really nice bonus.

	

	
	Conclusion

"You choose the web you want." — Brent Simmons

Bare with me for a paragraph as I summarize a scene toward the end of the third Harry Potter movie, The Prisoner of Azkaban. Harry and Hermione are down by the lake watching the Dementors suck the life out of Sirius and the other Harry Potter. Harry doesn't do anything, because he thinks his dad will come to save them. He doesn't act at first, because he thinks someone else will solve the problem they're in.

Hermione cuts through the uncertainty, saying:

Harry, listen to me. No one's coming.

We sometimes write code as if another developer will come in and clean it up later — improving it, removing the careless bits, the shortcuts. All we need to do is get the basics running as quickly as possible. Someone else will come in and refactor it later.

But the truth is, no one is coming. If it's going to be done right, we need to do it. Now, not later.

So it is with social media. The big social media companies are never going to make changes that would risk undermining their dominance. Government is not going to step in and have all the answers. If there's a fix, it's up to us.

Breaking up Facebook

“If Facebook's power to swing elections is like the Ring, then the only solution is to destroy that power.” — Scott Rosenberg

Facebook’s power is not absolute. Unlike true monopolies that can ride their success for decades, Facebook is always looking out for the next app that will pull away millions of their fickle users, who pay for Facebook with nothing except their time and entanglement in the social graph. Facebook’s paranoia about potential competitors makes them ruthless.

As Kevin Roose wrote in The New York Times after the leaked Facebook Files, Facebook is weaker than we knew. They are in trouble:

Not financial trouble, or legal trouble, or even senators-yelling-at-Mark-Zuckerberg trouble. What I’m talking about is a kind of slow, steady decline that anyone who has ever seen a dying company up close can recognize.

Cory Doctorow wrote for the Guardian about how it becomes easier to leave Facebook with each friend who leaves:

And as users leave, network effects start to work in reverse: though every user that joins makes your service more valuable, every user that leaves makes the service less valuable.

Attacked on all sides, with slowly eroding trust and rising competition like TikTok, Facebook is no longer in a position of strength. In fact, Daily active users dropped globally in 2021 for the first time in Facebook’s history.

In late 2018, there was a huge report in The New York Times about Facebook:

But as Facebook grew, so did the hate speech, bullying and other toxic content on the platform. When researchers and activists in Myanmar, India, Germany and elsewhere warned that Facebook had become an instrument of government propaganda and ethnic cleansing, the company largely ignored them. Facebook had positioned itself as a platform, not a publisher. Taking responsibility for what users posted, or acting to censor it, was expensive and complicated.

The New York Times interviewed over 50 people for the story, and it shows. There are a lot of interesting behind-the-scenes stories, especially Facebook's relationship with Washington, and more than I can quote here.

The same week, an article from The Washington Post covered early Instagram employees becoming disillusioned with the platform:

Three of the early Instagram employees, including Richardson, have deleted it — permanently or periodically, comparing it to a drug that produces a diminishing high. One of the people said he felt a little embarrassed to tell people that he worked there. Two of the other early employees said they used it far less than before.

This is why I don't ever want to sell Micro.blog. I can't imagine having to sit on the sidelines and watch with disappointment what it might become if it drifted away from its mission.

I think pushback against Instagram is coming, as more people who have already left Facebook also remember that Instagram has the same leadership, and the platform is far enough off track that even the founders have left. It's a good time to be posting photos to your own blog instead of Instagram.

In a post in 2018, Ben Thompson recognized that the threat to Facebook is when it becomes accepted fact that using the app isn't good for you:

It follows that Facebook’s ultimate threat can never come from publishers or advertisers, but rather demand — that is, users. The real danger, though, is not from users also using competing social networks (although Facebook has always been paranoid about exactly that); that is not enough to break the virtuous cycle. Rather, the only thing that could undo Facebook’s power is users actively rejecting the app.

Having your own domain name for blog posts and photos isn't just about personal independence from the control of massive social networks. Owning our content is key to the way out of the current social network mess.

Ben Thompson also had an excellent article about free speech, political ads, and Facebook. There's a good debate to be had about the roll of curation and fact-checking ads, but on the problems of massive, ad-based social networks there can be no doubt:

In the long run, though, it is very problematic that such a powerful player in our democracy has no accountability. Liberty is not simply about laws, or culture, it is also about structure, and it is right to be concerned about the centralized nature of companies like Facebook.

Platforms that have as many problems as Facebook does can always be improved, but by design they can never be good enough because their size alone is one of the problems.

The good news: it's up to us. We can choose to reject these platforms and move to a more distributed web of indie microblogs. We can choose to reject the attention power-grab of the algorithmic timeline. We can choose to build the web we deserve, but it's not going to happen if you keep feeding photos into Instagram.

There’s precedence for this. When Elon Musk took over at Twitter, he made a series of decisions that upset users. Laying off many employees, bringing back Trump and right-wing users who were banned, suspending accounts with seeming randomness, and preventing linking to other social networks all built into a narrative of an impulse, visionless CEO who was running Twitter into the ground.

Mastodon and other ActivityPub-based platforms like Micro.blog were already growing. There was a growing sense that any new platform needed to at least make some attempt at openness, because that’s what users wanted. The growth of Mastodon as Twitter stumbled under Elon Musk was a clear sign that users wanted choice and decentralization was part of that.

Adam Mosseri, the head of Instagram, acknowledged that industry trend with the launch of Meta’s Threads, a Twitter-like platform based on existing Instagram accounts:

I do think that decentralization, but more specifically — or more broadly — more open systems are where the industry is getting pulled and is going to go over time. And for us, a new app offers us an opportunity to meaningful participate in that space, in the way that it would be very difficult to port an incredibly large app like Instagram over, and so to lean into where the industry is going.

The industry is going that way because users are slowly forcing it to go that way. We have the kind of leverage that can move Facebook should we choose to make it a priority.

Power corrupts. For social networks, the corruption is not necessarily because of unethical human behavior but because the very concentration of power inherent in massive centralized social networks means platforms can be exploited. They also lean away from interoperability, reinforcing existing monopolies.

In late 2019 it was revealed that Twitter employees were using their access to the platform to steal private user data and hand it to Saudi Arabia. They targeted Twitter because of Twitter's size. There are so many people on Twitter, exploiting the platform will give them access to more private data than a smaller social network with fewer users.

United States attorney David Anderson said:

The criminal complaint unsealed today alleges that Saudi agents mined Twitter’s internal systems for personal information about known Saudi critics and thousands of other Twitter users.

Because of Twitter's size and centralized nature, one hack (or internal spying) can compromise many accounts. In 2020, hackers took over 130 popular Twitter accounts, sending tweets as those users to ask followers to send Bitcoin. Before Twitter could shut it down, the hackers had walked away with $180 million in Bitcoin, untraceable.

A more distributed web would limit how many accounts could be hacked with a single exploit. Instead of the hackers being able to send tweets as Barrack Obama, Jeff Bezos, Elon Musk, and many others all at once, if accounts were distributed across different web sites, maybe a hack would have only exploited a single account, limiting the damage.

We accept network effects in today's social networks that give more power to the leading tech companies, ignoring earlier models on the internet that showed how competition can bring about change. Cory Doctorow blogged for the EFF about how despite Usenet's initial top-down structure, it allowed for an entire alt. sub-hierarchy under which content flourished, independent of centralized control:

If adversarial interoperability still enjoyed its alt.-era legal respectability, then Facebook alternatives like Diaspora could use their users' logins and passwords to fetch the Facebook messages the service had queued up for them and allow those users to reply to them from Diaspora, without being spied on by Facebook. Mastodon users could read and post to Twitter without touching Twitter's servers. Hundreds or thousands of services could spring up that allowed users different options to block harassment and bubble up interesting contributions from other users -- both those on the incumbent social media services, and the users of these new upstarts.

But the fact is that Facebook is not built on an open platform. There is no Usenet-like model that can encourage alternatives while still being compatible with the Facebook app. The opposite has happened as Facebook has moved to shut down many of the use cases for their API.

Many people go back to regulation, looking for answers, looking for a way to drain the moats that big tech has built around their platforms. With the growing outcry over how social networks like Facebook approach privacy, there have been calls for the government to come in and save us from the worst impulses of the profit-driven social networks. All we need to do is make new laws and let regulation solve the problem we're in.

And there is some logic to this. Challenges in the courts have put pressure on big companies but have largely been unsuccessfully challenging the power of companies like Facebook with its social networks or Apple with its control over iOS app distribution. As shown in the Judge Yvonne Gonzalez Rogers’s ruling in Epic vs. Apple, while some changes can be forced by the courts for anticompetitive reasons, the antitrust laws were written too long ago to be fully relevant to today’s digital platforms.

Instead, the power is chipped away in bits until it accelerates, as Basecamp co-founder David Heinemeier Hansson noted after testifying for the US House Antitrust Subcommittee:

But as the saying goes, change comes slowly then all at once. I believe we've just started that "all at once" phase with antitrust now. The past year has seen a tidal wave of investigations, hearings, reports, and testimony finally washing away the innocence of big tech. The monopoly question is no longer one of "are they/are they not", but about what should we do with the fact that they definitely are.

Mark Zuckerberg himself had tried to get in front of this, seemingly asking for Facebook to be regulated. Om Malik was skeptical:

Facebook’s most egregious recent move is asking for regulation of the Internet. It is easy for them to ask for regulation, now that they have formed a cozy duopoly with Google that allows them to control citizen data and advertising dollars.

While regulation has its place, it's not enough. We can't control what the government does, and most of us don't have the patience to wait. So let's focus on what we can do.

Too often I think we'll be disappointed waiting. Nilay Patel wrote for The Verge about the $1 billion fine against Facebook by the FTC:

That’s actually the real problem here: fines and punishments are only effective when they provide negative consequences for bad behavior. But Facebook has done nothing but behave badly from inception, and it has only ever been slapped on the wrist by authority figures and rewarded by the market.

The fine was widely condemned as not adequate. But no fine can solve the problem of massive social networks like Facebook. The solution must be more fundamental: a shift in the way we publish on the web, a return to independent blogs and smaller networks.

If everyone who criticized the $5 billion fine against Facebook as inadequate — while still posted to Instagram everyday — instead posted to their own site, we could make progress. Taking back our posts and photos is the best way to reduce Facebook’s power.

Remember Jeffrey Zeldman's article about venture capital. To succeed as a venture-backed company, founders must have continued growth. They must forego early profits to grow as quickly as possible, only monetizing when they can leverage their scale. By design, they must be large companies. By design, the goal is millions of dollars in revenue, or even startup unicorns valued at $1 billion or more.

Following Jeffrey's zarticle, Ben Werdmuller had a great post about how we shouldn't care so much about startup unicorns, using Micro.blog as an example of another type of business:

Zeldman looks to Micro.blog as a potential answer. It's a great company that could point to what a more general solution could look like, but not specifically because it works with the indieweb. Instead, it's worth examining how it's financially structured. Rather than a unicorn, it's a zebra.

It would be great to have more small- and medium-sized companies that can move the web forward. Unlike monopolies, which are too powerful for the market to regulate, competition among small companies can benefit users. Small companies can innovate while still being grounded in somewhat boring business models. We need multiple social networks that interoperate via the web instead of just a couple of huge platforms.

The replacement for Facebook can’t be another social media company. As Write.as founder Matt Baer wrote about in 2019, maybe the next thing can’t be called social media at all:

We all know Facebook is terrible. This is common knowledge in 2019. But if we're ever going to replace it, we can't frame new solutions in terms of social media. Facebook and Twitter and Instagram and on and on are social media. They won that title. Any new entrant to the space that calls themselves that loses by default. So let's not use that title.

So-called Web3, for all its problems trying to reinvent distributed web identity, is at least good marketing because it contains the word “web”. It immediately feels bigger and more important than any single new social media site, even if its solution to the problem of centralization is no better (and possibly much worse) than good solutions like DNS that have existed for decades that we still haven’t taken enough advantage of.

There's a difference between companies that are paid for directly by users and companies based on massive ad-based networks. Ben Thompson outlined this in an article about regulation, arguing that the super-aggregators like Facebook require government intervention. Other companies that are better aligned with users' interests can be "regulated" by the market:

I think, though, that platform providers that primarily monetize through advertising should be in their own category: as I noted above, because these platform providers separate monetization from content supply and consumption, there is no price or payment mechanism to incentivize them to be concerned with problematic content; in fact, the incentives of an advertising business drive them to focus on engagement, i.e. giving users what they want, no matter how noxious.

Micro.blog is a small part of the puzzle — and it's a puzzle piece of a different shape that doesn't fit cleanly into Ben's diagram around free services — but I think it's an important part to focus on.

Some may call for Facebook to be broken up because it has too much power. But we can't count on antitrust law to do it. Users must do it. We must do it by moving our attention away from companies we don't believe in.

Exodus

“We come now to the very brink, where hope and despair are akin.” — Aragorn from The Lord of the Rings

Twitter leadership always seemed a bit uncertain of their own actions, but the company was never so chaotic as when it was acquired by Elon Musk. Entire teams were disbanded. The philosophy and company culture were flipped upside down. Elon Musk seemed impulsive. The company was renamed X, features were shipped without a clear understanding of their impact, and throughout it all Elon was posting memes and becoming the most divisive leader in tech.

The company that had changed the world and cemented the microblog format was in free-fall. But out of that chaos came the opportunity for new companies and new protocols.

As people were exiting the platform, a new wave of X competitors emerged, some founded by former Twitter employees. Unfortunately, many people had learned the wrong lesson from the history of Twitter. They were creating yet another closed silo, doomed to fail just as interest was growing in more distributed platforms.

Post.news launched with their own take on “real news” and moderation. Pebble (formerly T2) got some traction and funding but shut down after a year. Without building on interoperability with other platforms, these companies needed to dramatically grow to become viable businesses on their own, at the same time that users wanted to escape from the single point of failure of centralized systems.

Go further back to Twitter’s roots and you see this struggle between closed ad platform and a more forward-looking open protocol.

Evan Henshaw-Plath, known online as Rabble, worked with Jack Dorsey and the early Twitter team. In a thread on Twitter, Rabble reflected on the previous upheaval around Twitter’s relationship with third-party developers:

Back in 2015 Bill Gross at Idealab tried to take over twitter. He did it by creating a billion dollar fund to buy up twitter clients. If he got enough clients, he could make them post to his own twitter like microblogging site in addition to twitter.

Bill Gross expanded his portfolio of Twitter third-party apps to include UberTwitter, EchoFon, and TweetDeck. Twitter risked losing control of the client app experience. Rabble continued:

That's why twitter bought TweetDeck and then didn't do anything with it. The whole point was to take TweetDeck away from Bill Gross, prevent it from being used as a weapon against twitter.

There had always been this split within the company over whether Twitter should be a massive, centralized ad platform or a more open, distributed protocol for the entire web. Opinion within Twitter seemed to rock back and forth, never clear whether they should truly embrace third-party developers. The indecision made for an unstable platform.

An article in Forbes further connects Rabble and the early work on federation at Twitter:

Henshaw-Plath also hired Blaine Cook, who would go on to be Twitter’s chief architect and helped brainstorm an early version of Twitter that could federate rivals into a decentralized system. If launched on Groundhog Day 2008, when it was completed, that federation would have prevented Trump from obtaining such a powerful megaphone in the first place by giving users more control over their network.

This effort at Twitter was in fact based on standards that are adjacent to today’s IndieWeb and fediverse. PubSub, which we covered in Part 5, is visible in a whiteboard photo from 2008 with Blaine Cook and Ralph Meijer.

Jack Dorsey himself may have been the most public in later years, regretting that Twitter didn’t take a more open approach earlier.

Jack tweeted this theme in support of Elon Musk acquiring Twitter in 2022:

The idea and service is all that matters to me, and I will do whatever it takes to protect both. Twitter as a company has always been my sole issue and my biggest regret. It has been owned by Wall Street and the ad model. Taking it back from Wall Street is the correct first step.

A year later, Elon Musk gave an interview with Andrew Ross Sorkin at DealBook. Elon had continued the efforts started with Twitter Blue to diversity income away from ads. X had a series of premium offerings, from new features like tweet editing and longer posts, to the Grok AI. Many advertisers including Apple and Disney paused their ads on X after Elon’s controversial and antisemitic tweets. A clearly upset Elon lashed out at advertisers:

If somebody is going to try to blackmail me with advertising, blackmail me with money, go fuck yourself.

Jack Dorsey even became disillusioned with Bluesky, the project spun out of Twitter to build a new protocol. Jack was more interested in Nostr and he eventually deleted his Bluesky account. As he posted to Nostr:

Bluesky was funded as an independent entity when I was CEO. Twitter can't direct them. Goal was to build a protocol for social media. Nostr is that and more, and taking a different development model and path. TBD's web5 provides some similar infrastructure, specifically to decentralize / make permission-less DNS and Certificate Authorities. I imagine there will be cross over and sharing/stealing of ideas between all 3. And everyone is better for that.

Rabble too was drawn to Nostr. With no momentum on the Scuttlebutt protocol on which he had based his mobile app Planetary, Rabble started moving to Nostr. He introduced a new Nostr-based app called Nos.

Nostr pitched itself as censorship-resistant, with posts distributed on a number of relay servers:

It doesn't rely on any trusted central server, hence it is resilient; it is based on cryptographic keys and signatures, so it is tamperproof; it does not rely on P2P techniques, and therefore it works.

Nostr was evolving quickly. It felt like a wild-west platform, overrun with notes about crypto, spam, but also excitement from small developers building something new. The exit from Twitter had left a void that many developers were attempting to fill.

Independent blogs and independent developers always felt complementary to me. In the early days of the blogosphere, in the hallways at SXSW Interactive, the projects that were interesting weren’t built by hundred-person teams. Solo developers were bloggers, designers, and coders. There was always a new project that glued other people’s APIs together, or that had a Web 2.0 take on an old idea.

Now, that almost feels impossible because Facebook, Google, and Apple dominate the market, so there are whole product categories that people ignore. And new, younger developers get their start in large teams of dozens of developers just to build a single app. Maybe they don’t even think one person can build something on their own.

New projects with the spirit of the fediverse and the IndieWeb — as Johannes Ernst said, “identical twins separated a birth” — have brought APIs back to the forefront. Indie developers can build on these platforms without worrying that they will be burned because X or Facebook changed their API terms. Mastodon is not going to shut off their API. Ownership is in the hands of thousands of server instances, or in the case of Micro.blog, the business is aligned with users instead of advertisers.

The move away from large silos to smaller platforms is not going to be easy. There will be more friction for users. Posting to a silo is like a shortcut to engagement. You might be able to reach people faster with a Medium post or a long Twitter thread.

This post from Rian Van Der Merwe talks more about platforms as shortcuts:

The point is that publishing on Medium and Twitter and Facebook gives you an immediate shortcut to a huge audience, but of course those companies’ interests are in themselves, not in building your audience, so it’s very easy for them to change things around in a way that totally screws you over

Medium might be a shortcut to building an audience for a single post, but that doesn’t help building a true audience. You might get more exposure, and maybe one of your posts will be lucky enough to be recommended and included in Medium’s daily email, but after someone finds it they aren’t as likely to read your other posts and subscribe to your entire site.

When someone finds your blog, though, they are immersed in your design, your theme, the feel of your writing.

In expanding the limit of Twitter posts to thousands of characters, Twitter attempted to keep more content on their platform. Closed platforms want to trap all activity, not send it out. The danger in longer Twitter posts isn’t that they will replace so-called textshots — screenshots of longer notes written in another app — it’s that they will replace external blogs.

For all of X’s problems, at least right now most of the good writing we see on Twitter is actually linked out to external blogs. To shift that to be stored more on Twitter itself would be a setback for the open web. It would slowly train a new generation of timeline surfers to prefer Twitter-hosted content instead of blogs.

Will Oremus wrote in Slate about this potential for growing the Twitter walled garden:

What’s really changing here, then, is not the length of the tweet. It’s where that link at the bottom takes you when you click on it—or, rather, where it doesn’t take you. Instead of funneling traffic to blogs, news sites, and other sites around the Web, the 'read more' button will keep you playing in Twitter’s own garden.

Hossein Derakhshan spent six years in jail in Iran because of his blog. With the clarity of seeing years of changes to the web and social networks all at once after his release, he wrote an important essay on the value of hyperlinks and the open web:

When a powerful website – say Google or Facebook – gazes at, or links to, another webpage, it doesn’t just connect it , it brings it into existence; gives it life. Without this empowering gaze, your web page doesn’t breathe. No matter how many links you have placed in a webpage, unless somebody is looking at it, it is actually both dead and blind, and therefore incapable of transferring power to any outside web page.

He mentions apps like Instagram, which have no way to link in posts to the outside world. Too many apps are exactly like this: more interested in capturing eyeballs for ads than opening up their platform. The default for native mobile apps is to become silos, while the default for web sites is to be open and support linking.

Hossein also wrote that “the stream” – the timeline, a reverse-chronological list of short posts or links – is turning the web into television. This certainly feels true for TikTok with its infinite scrolling. But there’s a lot we can learn from the timeline. It’s a valuable user experience metaphor that we should take back from Twitter and social networks.

It may seem that ActivityPub, Bluesky, and Nostr are pulling the social web in multiple directions. But it’s okay to experiment, and we may end up having a couple of interconnected layers in the fediverse. Bluesky in particular has received pushback against continuing with their AT Protocol instead of using ActivityPub.

Bluesky CEO Jay Graber responded to those concerns in an interview with Fast Company:

I do think that having multiple protocols at this time is good. […] Because we’re testing out what works and how these protocol design choices interplay.

There will be several overlapping efforts at federation throughout 2024. It feels chaotic because so many developers are moving fast again for the first time, adding their own flavor to the social web.

Meta’s Threads embracing ActivityPub will ensure that Mastodon and ActivityPub are here to stay. Mastodon creator Eugene Rochko blogged about the impact Threads will have on ActivityPub:

The fact that large platforms are adopting ActivityPub is not only validation of the movement towards decentralized social media, but a path forward for people locked into these platforms to switch to better providers. Which in turn, puts pressure on such platforms to provide better, less exploitative services. This is a clear victory for our cause, hopefully one of many to come.

For many people, Mastodon has been the first time they’ve experienced a post-Twitter world and realized that it’s fine. As the fediverse grows, this only becomes easier. Easier to live without the big platforms, easier to move between services. But the entire fediverse is still small compared to the size of centralized silos and even the whole web itself.

Social networks come and go. Protocols evolve. What always remains is your blog, based on open standards: HTML, DNS, and IndieWeb formats. It is always the right time to invest in the open web.

In a January 2024 blog post leading up to his birthday, Matt Mullenweg asked people to blog:

Publish a post. About anything! It can be long or short, a photo or a video, maybe a quote or a link to something you found interesting. Don’t sweat it. Just blog. Share something you created, or amplify something you enjoyed. It doesn’t take much. The act of publishing will be a gift for you and me.

I love this because it’s not just a birthday gift to Matt. It’s a gift to the whole web. With every new blog post, the web can become more interesting, more diverse, more a reflection of today’s culture.

Are we making the web better? We don’t have to quit X, Facebook, and Instagram. We don’t have to be outraged at big tech executives, or rejoice when they’re hauled up to Capitol Hill to testify before Congress. But we do have to blog, write, post photos on our own site, read, and create consistent with the original vision for the web.

Even if we also post to closed silos, let’s put enough into the open web to move it forward.

The way out

“We keep moving forward, opening new doors and doing new things, because we’re curious… and curiosity keeps leading us down new paths.” — Walt Disney

As I wrap up writing this book, there have been many articles published in the last few years about the role of social networks. Some even reach the obvious conclusion: that the top social networks are too big. This interview on Slate was fairly representative, covering monopolies and centralized power.

But these articles always stop short before hitting on a solution. They always wrap up saying "it's tough to solve this".

I think there are 4 parts to finding our way out of this mess with massive social networks:

Better features: We should be careful before copying everything from Twitter. I don't want to take features that failed us and recreate them in a new environment. Micro.blog leaves out features on purpose that we think undermine a healthy community.

Open standards: When I first stopped tweeting a dozen years ago, it was largely because of the developer-hostile attitude from Twitter. Proprietary APIs reinforce the lock-in with content silos. This is why so much of Micro.blog is based on IndieWeb standards. It's why Mastodon uses APIs like ActivityPub.

Content ownership: Controlling the writing and photos you post online isn't about open source or the technical experience to run a server. It's about using domain names for identity, so that you can move your data in the future without breaking URLs.

Smaller social networks: Many people are looking for "the next Twitter", but it's not enough to replace Twitter with a new platform and new leadership. Some problems are inevitable when power is concentrated in only two or three huge social networks — ad-based businesses at odds with user needs and an overwhelming curation challenge. This might be Mastodon's greatest contribution: getting people used to the idea of many smaller, interoperable communities.

There's not only one solution. Platforms like Micro.blog and Mastodon each have a role to play and are complementary. Mastodon helps by encouraging smaller social networks, distributing the task of moderation, but doesn't prioritize content ownership. (An account on an instance like Mastodon.social has no more ownership of its content than an account on Twitter. Both let you export your data but both live at someone else’s domain name.)

If you are frustrated with the state of social networks, I recommend blogging more. I love seeing new blogs and photo blogs just as we're having a serious debate in the mainstream about social networks. The way out isn't easy, but there's a clear path waiting for us to take it.

Sticking to the mission statement

“I won't look too far ahead
It's too much for me to take
But break it down to this next breath
This next step
This next choice is one that I can make.” — The Next Right Thing

When someone new joins Micro.blog, they have a bunch of ideas for making it better. Not everyone agrees on which ideas are the ones to add first, because everyone naturally has different priorities. We could easily get distracted trying to solve many problems, implement all the features, and it would dilute everything that this book has been about.

We could get lost in the weeds of feature requests, forgetting why we built Micro.blog. We could get pulled down a rabbit hole with the wrong optimizations, not knowing which next bug fix moves us closer to our goal.

Micro.blog's goal is to encourage more people to post to their own blogs instead of only on big social media sites, and to have a great community where conversations can happen from those posts. The goal is not to completely replace any specific social network, but instead to help the future be a little more decentralized, with more variety and independence in the web. Important changes are possible if we don't concentrate so much of the web's content only on Facebook and Twitter.

I've been happy to see so many people who have found that Micro.blog does supplement existing social media so well that they can spend more time blogging, browsing the Micro.blog timeline, and participating in conversations. Other folks will jump in to Micro.blog from time to time, but might have most of their attention elsewhere, and that's fine too.

Facebook's mission is different. They want to connect everyone in the world. Billions of people writing posts and sharing photos on a single domain name. Mark Zuckerburg talks about this often, and it’s his goal for Threads as well. Sure, some great things can happen when you do that, to bring people closer together, but also terrible things. The trade-off is not worth it.

Micro.blog leaves certain features out on purpose because adding those features risks changing our mission from what it is to what someone else's mission is. We do want the community on Micro.blog to keep growing so that it's more diverse and valuable to people, and for many more people to start new blogs that we can host on our platform. We can do that while staying true to our original goals and not falling for the trap of trying to become the next Facebook or Twitter.

Every new feature should be judged based on whether it makes blogging easier. Does it move us a little closer to independence from the massive platforms, helping smaller blogs flourish? That is indie microblogging.

Special thanks

“There's no such thing as a sure thing. At the end of the day, the only thing that matters is what you think.” — Ali from Draft Day

In the summer of 2015, I wrote a reminder to myself on a little scrap of paper:

Quit August 1st no matter what.

I folded the paper and put it in my wallet, carrying it around for weeks. I was nervous about quitting my job. After 14 years with the same company — a great team, the kind of place someone could just keep working for years and know they were working on something valuable — I knew I needed a hard deadline to move on to focus on Micro.blog.

It was a big risk. So thanks first to my wife, Traci, who knew it was important to me and gave me the go-ahead to make the jump from a good job that supported our family to something unknown. At times Micro.blog has been a challenging journey that I couldn’t do without you there.

To my kids, Alexandra, Meredith, and Julian, you make me want to leave the world a better place. Thanks for your jokes that I would never finish this book, but also for your perspective on how the next generation uses social media.

To my mom, thanks for setting me on the path that decades later would lead me here. Believing I could do just about anything (maybe even write a book) started with family and friends believing in me.

To all 3000 Kickstarter backers, thank you for supporting the project early, for participating in the Micro.blog community, and for your patience.

To my friends and beta testers, thanks for checking out Micro.blog even before it had its final name, and for your feedback in Slack and email.

To my blog readers and podcast listeners who read the first published draft, you caught many typos and awkward grammar that I would’ve missed. The detailed editing notes from Nick Radcliffe were especially invaluable.

To the IndieWeb community, the work you all have been doing for so many years is an inspiration. I'm so glad that Micro.blog can play a part.

To Jean, thanks for wanting to be such a big part of Micro.blog from the beginning. From your leadership in the Micro.blog community to our discussions of platform features, Micro.blog would be missing something important without you.

To Jon, thanks for Sunlit and Wavelength. I'm lucky that we still get to work on these apps together even years after first dreaming up the idea for Sunlit in Montreal, before Micro.blog was even a thought.

To Vincent, thanks for your work on Gluon, and more recently for agreeing to join the Micro.blog team to make the whole platform better. Our support for Android would not be possible right now without you.

To Daniel, we sometimes joke that our podcast is half entertainment for listeners and half therapy session for ourselves, but it’s true that talking through the development of Micro.blog and this book has been invaluable.

It has been the highlight of my career to be able to work on Micro.blog. There is still a long road ahead to build the web we deserve. I hope to be working on Micro.blog for many years to come.

	
OPS/images/1925256ac1.png
mstdn.io
mastodon.cc

memetastic.space

octodon.social

design.vu
awoo.social linuxrocks.online
mastodon.social
mastodon.club

mastodon.ml

indigo.zone mastodon.xyz

meow.social

securitymastod.one
’ mastodon.fun

OPS/images/c3fb7b5ea2.png
5159 ull ¥ @m
@paulrobertlloyd

Paul Robert Lloyd
@paulrobertlloyd

Independent graphic designer and
web developer.

.)
2020-01-1

2020-01-11 2020-01-10 2020-01-09

7 -
—
VROY : SR

OPS/images/4075f8370a.png
il T e

11:044

11:044

Mimi

Uploading 3

6 Photos Selected

OPS/images/9ea8632ac3.png
HOW STANDARDS PROLIFERATE:
(65 AVC GHPRGERS, CHARACTER ENCIOINGS, INSTANT MESSAGIG, ETC)

SITUATION:
THERE ARE
14 COMPETING
STANDPRDS.

14?! RiDICULOUS!

WE NEED To DEVELOP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONE'S
USE CASES. ey

\ O)

A

&=

SITUATION:
THERE ARE
15 COMPETING
STANDPRDS.

OPS/images/acfccae0cf.png
Carrier ¥ 9:12 AM o 7

< Filters Add Photo

Chrome Pacific Transfer Process

OPS/images/cover.png
Indie
Microblogging

Manton Reece

OPS/images/65a7eabf8d.png
Radio 8.0.8: 0 | Tools | P

Pusenians

[Faragraph. =] [Fort... =] [Sue... =] [Color. =1 ([
B 7 y|EEE=iEFEES SunMonTue Wed Thur Sat

123 456
7 8 9 10 111213
1415 16 17 181920
2122 23 24 232627
28 29 20 31

How Jan

Cloud tinks: &

the public
your vablog.
this link to your

s and colleagues.
Refarers shovs you
vhich sites are pointing
to yours and how many.
hits thay'ra delivering.
Ranking by P:
Reads lists the 100
most popular Radio-
managed veblogs,
today and all-time.
Updater shovs you
which vablogs in your
community have
updated recently.

@ WYSIWYG C Source

OPS/images/1604f51c3b.png
Some recent posts from the community. Or browse: wiw &~ Q

OPS/images/3d2b9de6dd.png
Next

Aden Amaro As

1977

No Filter

OPS/images/4e6da441a3.png
E73 Manton Reece # Manton Reece A E % O &
This week’s Micro Monday guest is
Natalie Hester. She talks with Jean about
keeping a gratitude journal on Micro.blog.
Would be fun to collect these kind of
posts together, either with emoji or from Ma nto n Reece
common phrases.
January 7, 2020 at 9:52 AM
& Manton Reece This week’s Micro Monday guest is Natalie Hester.

For our first podcast episode of 2020,
@danielpunkass and | talk about recent She talks with Jean about keeping a gratitude

deadlines, setting goals, and look back at

very old ambitions from 15.and 20 vears—— journal on Micro.blog. Would be fun to collect

ago.
2d these kind of posts together, either with emoji or
& Manton Reece from common phrases.

We picked up Secret Hitler over the
holidays and loved playing it. Great for 5-
10 players.

OPS/images/c037eee590.png
1:109 S 1109
< TestFlight ¥ <A Writer
AA & micro.blog ©

Micropub Timeline Mentions Favorites Discover

iA Writer will request new posts to be

created as drafts. Micropub servers Plans Account Help osts lew Post

that don’t support this feature will

RLERHlpedate) The app ia.net/writer is requesting access to

. your Micro.blog account. You are signed in as
yourname.micro.blog

£ @manton.

Approve

Sign Out

111 1 rerer

ABC space return

© ¢

OPS/images/0ea6744e98.png
Replies: lncludeimyireplies on

. Timeline only
www.manto

OPS/navigation.xhtml

		
			
						
					Table of Contents
				

						
					Introduction
					
								
							What is microblogging?
						

								
							Uses for a microblog
						

								
							Mission to movement
						

								
							The way forward
						

					

				

						
					Part 1: Rewind
					
								
							Penn Station
						

								
							Pulled away from blogs
						

								
							Leaving Twitter
						

								
							App.net
						

								
							WordPress and Tumblr
						

								
							Interview with Leah Culver
						

								
							Toward decentralization
						

					

				

						
					Part 2: Foundation
					
								
							Domain names
						

								
							Syndication
						

								
							RSS for microblogs
						

								
							JSON Feed
						

								
							Introducing Micro.blog
						

								
							External blogs with WordPress
						

								
							Alternative platforms
						

								
							Micro.blog and feeds
						

								
							Part of the web
						

								
							Migration
						

								
							Blogging workflow
						

								
							Why indie microblogging
						

								
							Interview with Brent Simmons
						

					

				

						
					Part 3: IndieWeb
					
								
							Permanence
						

								
							Silos
						

								
							Cross-posting
						

								
							Owning your content
						

								
							Microformats
						

								
							Building blocks
						

								
							IndieAuth
						

								
							Micropub
						

								
							Webmention
						

								
							Bridgy
						

								
							Blog archive format
						

								
							Interview with Tantek Çelik and Aaron Parecki
						

					

				

						
					Part 4: Hypertext
					
								
							Photography
						

								
							Influence and reposts
						

								
							UI impacts behavior
						

								
							Using HTML
						

								
							Starting a new photo blog
						

								
							Sunlit and photo feeds
						

								
							Linkblogging
						

								
							Interview with Om Malik
						

					

				

						
					Part 5: Decentralization
					
								
							Notifications
						

								
							Mastodon
						

								
							Pixelfed
						

								
							ActivityPub
						

								
							Your blog
						

								
							WebSub
						

								
							Indie readers
						

					

				

						
					Part 6: Community
					
								
							Replies
						

								
							Harassment
						

								
							Misinformation
						

								
							Section 230
						

								
							Unattended algorithms
						

								
							Open gardens
						

								
							Discovery
						

								
							Popularity contests
						

								
							Banning users
						

								
							Interview with Jean MacDonald
						

					

				

						
					Conclusion
					
								
							Breaking up Facebook
						

								
							Exodus
						

								
							The way out
						

								
							Sticking to the mission statement
						

								
							Special thanks
						

					

				

			

		
	

OPS/images/817a6bf817.png
@
& et

GET /feed.xml

OPS/images/1dacc8e099.png
mstdn.io

mastodon.cc

memetastic.space

octodon.social ‘
deslgn vu

awoo.social
mastodon.social
mastodon.club

‘ mastodon.ml
. indigo.zone mastodon.xyz

securitymastod.one

linuxrocks.online

meow.social

mastodon.fun

OPS/images/423fef005c.png
Portrait Square

Landscape

OPS/images/0d01588901.png
Bio

Tell us a little bit about yourself

You can @mention other users and organizations to link to them.

URL

(Postraenos]

OPS/images/8b986efe12.png
W twitter.com

m instagram.com

@ snarfed.org

OPS/images/d35b7cce2d.jpg
Style:

Alt. Text:

Image Size:

Metadata:

Color Model:

Upload to:
File Name:

Section:

Width:

Height:

Upload Utility

Drag an Image

or File Here

—— i ———

Choose File...

OPS/images/d819d19e4a.png
@macgenie This is great. Thanks!

Cancel Post

OPS/images/cef6b1bb0e.jpg
-,

Il

I

OPS/images/587d4a3f84.png
‘ POST /subscribe . ‘
' ¢

micro.blog hub yourblog.com
o0 o0 ‘

OPS/images/1ed91fe39c.png
Some recent posts for @@ photos. Or browse: & & &~ | Q i More Photos

OPS/images/7787779d2a.png
Complete trigger fields

https://manton.org/feed.xml|

visit the help page

Create trigger

OPS/images/289471261d.png
mstdn.io

mastodon.cc

memetastic.space

octodon.social ‘
deslgn vu

awoo.social
mastodon.club mastodon.social ‘

‘ mastodon.ml
. indigo.zone mastodon.xyz

securitymastod.one

manton.org

meow.social

mastodon.fun

OPS/images/f862eb6e18.png
AWS Oregon

AWS Virginia

AWS California

OPS/images/8657b5fcf4.jpg

OPS/images/f7c48639d9.png
® Q . .
POST/pmg .
@ —— Q .
micro.blog yourblog.com
®
00 .0 °
o ®
e 00

OPS/images/19bc72e9f6.png
rss

Choose a service

Step 1 of 6

M

RSS Feed

OPS/images/b9526ba58a.png
Utah

Stanford

UCBA .

UCLA

OPS/images/87ba0b1e20.png
9:53

9)
I

< Pages New Page

www.manton.org

30 days

For a couple of months in 2016, | tried visiting
30 coffee shops in 30 days. It was such an
interesting challenge that | tried it again, visiting
30 libraries. Here are the overview posts with
links to all the individual microblog posts:
Coffee shops Libraries And updates for 2019:
Parks Apple Ar...

2020-03-31

Travel budgets

I'm trying to stick to a budget for business
travel this year. It can be notoriously expensive
to attend WWDC, for example, and in past
years I've certainly blown through thousands of
dollars on the trip. This page will document my
attempt to get the costs down. WWDC 2018 in
San Jose: Fairmont Hote...

2020-01-29

¥ Indie Microblogging
https://book.micro.blog/
2020-01-29

Photos

/photos/
AAAA AA A L J

OPS/images/ed9043efb2.png
9:52 < ==
Micro.blog 7
!’ Manton Reece
‘& ©@manton
(D Timeline
@ Mentions

Y¢ Bookmarks

Q Discover

O Posts
Pages

m]
Uploads

® Help

{ Settings

OPS/images/624ab37745.png
jsonbecker
SXSWEDU 2018 micro.json.blog
2018-03-08 1:34 pm Reply Unfavorite

blankbaby
Weekend Fun si& ke blog.blankbaby.com
2018-03-08 11:17 am Reply Unfavorite

ian_whitney
Fresh masa quesadillas e 7. ianwhitney.micro.blog
2018-03-07 9:56 pm Reply Unfavorite

jhcoxon
Pariedolia -jhcoxon.micro.blog
2018-03-07 6:08 pm Reply Unfavorite

iKeating
Maui
2018-03-07 4:13 pm Reply Unfavorite

k. ikeating.micro.blog

OPS/images/010b614b0a.png
& aaronpareckLcom

e v senes

£ micro.blog
GET /2019/121...

Host: aaronparecki.com

@aaronpk Congrats|

OPS/images/52b71c0469.png
Discover
Timeline &
Mentions

Bookmarks

Discover

Log Out

OPS/images/1a0303be41.png
. ‘
POST /ping . ‘
¢

micro.blog yourblog.com

OPS/images/0f0d87937f.png
‘ GET /feed.xml
_.m—-—-—*

micro.blog yourblog.com

OPS/images/bf06025a04.png
[XON] Hello worl from MarsEdit!

2 L 02 ©
Send to Blog Preview Options View on Web
Categories
B0 [ioce s | categories ________
Arcade
Title:) Books
| Essays
B I U & 1 ¢ pre .
Photos
Hello world from MarsEdit!| Podcasts
| Travel

Videos

OPS/images/730c6548b5.png
u Complete action fields

Step 5 of 6

Tweet text

{{EntryContent}}

Add ingredient

OPS/images/27535aaa4e.png
‘ l @manton

& Edit profile

What's on your mind?

OPS/images/1ebf811ca4.png
uil/MEF

Piint

]

cuity

OPS/images/5df525dd72.png
mastodon.social

OPS/images/85ccbd2d96.png
Timeline:) Show all posts and mentions.

Best to discover new conversations and people to follow.

© Show mentions only to people I'm following.

Includes fewer posts in busy timelines.

OPS/images/5d9650f2f3.png
X New Post Post

|[WordPress 5.0: A Gutenberg FAQ - Matt
Mullenweg](https://ma.tt/2018/11/a-
gutenberg-fag/)

/280
B o« _ [] manton.micro.blog &

Q Testing Asdfasdf |
Micro.blog QWERTYU I OFP

6:16 7 =

6:15 = -

X New Post Post

> | knew we would be taking a big leap.
But it's a leap we need to take, and | think
the end result is going to open up many
new opportunities for everyone in the
ecosystem, and for those being
introduced to WordPress for the first time.

237/280
A o« _ [] manton.micro.blog &

Testing ~ Asdfasdf |

QWERTYU I OFP

A 'S DF GHJ KL

A 'S DF GHJ KL

P =B
N ZXCVBNM.Q ZXCVBNM.
Copy Save to Files

- space . . - space

OPS/images/5c1f9e3b39.png
(Untitled)

Hello world.‘

OPS/images/3cc64cccde.png
micro.inessential.com

duncan.dev

yorrike.com

micro.welltempered.net

microblog.dandycatdesign.com

annie.micro.blog

. brentsimmons
1just renewed therecord.co for three years (the maxit

would let me). It gives me great pleasure to keep that
site going. | keep hoping Chris and I will find the time
to do a second season.

@

hris Hynes' his time on the Aperture team is
an amazing read from somebody who was there:
during the development of a product that had so
much promise, and yet..

Damn, 1 still miss Aperture.

~ yorrike
1just watched the final of The Good Place, and it
was... perfect.

@ macgenie
Between the Picard premiere episode and the latest

episode of Doctor Who, it has been a great time to

beafan. L@

0
|finished watching Long Shot this morning. That was.

afun movie. I'm not surprised it didn't win any major
‘awards, but it was a well-made crowd pleaser. O
Sean pleaser, in this case. &4}

Annie
Yesterday's midday beach break. (Kind of makes

surviving laundry tarantulas worth it.)

-~

OPS/images/fa55be37d2.png
£ Ghost
M Medium
Q M

& WordPress.com
& Custom WordPress

OPS/images/458ccd0c59.png
dunlaps,net

— “—’ /!

Aaenltkol o /
FTenenicroret —B&l skinpfanig.com
f stalbeasley.com

nnannovak.com

WY
\“\‘
Iy

wwwflutterby.net

www.sandeep

veganstraightedge.cof
\

OPS/images/b5c0f4ca28.jpg
Copy HTML §

OPS/images/eb5041abc3.png
The app ownyourswarm.p3k.io is requesting access to your Micro.blog account. You are
signed in as § @manton.

Approve

Sign Out

OPS/images/6b980c7c4e.png
BUSINESS

ENGAGEMENT

Social CRM
Enterprise clients

Media integration

A

Traditional Twitter clients

Syndication

< > CONSUMER

Social analytics

v

Social influence ranking

ANALYTICS

OPS/images/d96f52015c.png
Donald J. Trump & @realDonaldTrump - 6h

This Tweet violated the Twitter Rules about spreading
misleading and potentially harmful information related to
COVID-19. However, Twitter has determined that it may be in
the public’s interest for the Tweet to remain accessible.
Learn more

T

View

OPS/images/30b89f1d7d.jpg

OPS/images/0b23018e05.png
@Flish @Miraz

[Mon - Sat 9AM - 10:4!
Sunday 10AM - 997
www.BookCourt.o

@mroutley @adamprocter @gregmoore @kwgermer @ericlaurits @teisam

OPS/images/58b69ad3f1.png
@ aaronparecki.com g 8 micro.blog
POST /webmention

target=https://...
&source=https://...

OPS/images/a26199d375.png
Choose action service

Step 3 of 6

Q twitter

L

Twitter

OPS/images/9ab6b9d085.png
W twitter.com

m instagram.com

l new comment

G Forky! " on instagram.com

@ snarfed.org

i comment with Microformats

PaN c Forkyl " onbrid.gy

OPS/images/821d3672c1.png
Manton Reece

@manton on Micro.blog

OPS/images/5c2824e427.png
dave
It's bad for journalism that young practitioners don't have experienced
mentors. In tech this is celebrated. thenation.com

6:31am Reply Favorite

OPS/images/60fd5bf402.png
1230 T H 12:237 ol =
<« Safari

X New Post Post < photos -

Posting to **my own blog**... ’ sharding

Sometimes even when you're shooting on
4x5 film (with a Crown Graphic in this
instance), you just want to take cat pictures.

/280
2018-08-28 4:46 pm

"
¢ pip
Clouds

B o« _ [] manton.micro.blog &

qgwer tyuiop

a s df gh j k I

H z X ¢ vbnm &

123 space @ #

Y

OPS/images/8570bf0d3a.png
nanlawson.tumblr.com Search

nanlawson.tumblr.com
@nanlawson.tumblr.com

OPS/images/06ea8b4570.png
Set Username

manton

@manton.org

<«

OPS/images/666ec42b04.png
NICKYCSWEENEY Forky| *V
AUGUST 5, 2019

OPS/images/62f81badf8.png
IndieAuth lets you sign in with your domain name from supported apps. If you host your
microblog on Micro.blog, add your Twitter or GitHub username below to include a <link>
reference to those accounts on your published site. Add your Instagram username if you'd
like to connect to OwnYourGram.

Twitter: manton2
GitHub: manton
Instagram: mantontest

Update

OPS/images/e21bb306a2.png
e. snarfed -

@9 nickycsweeney Forky! "

OPS/images/84e5773d18.png
12:36 7

vl

a

Timeline

Timeline @
Mike Haynes @mikedotfm 1d

@upvalue | use wireless headphones
and earbuds with my Pixel 2. The less
cords, the better.

Charlie Sorrel @mistercharlie]
How to keep using Time Machine
without AirPort or Time Capsule
cultofmac.com

Colin Devroe @cdevioe 1d
MeToday: May 4, 2018 - May the 4th be

with you. Coworking with Tec and Aaron.

(see also, and on Flickr)

Also enjoyed some Pho.

Craig McClellan @craigmeciellan 1d
Foster Care Awareness Month 2018 —
Craig & Laura, et. al.

My wife wrote another great post
summarizing our lives as foster parents.

Q@ *

Menti Favorites

(*]

12:39 4

@

ut @danielpunkass
ature in @microdotblog to
Instagram archive to your
log or WordPress blog:
Nn.org/2018/05/i.

Al

Timeline

Timeline

Daniel Jalkut @danielpunkass sm
@dynamitemoth probably my favorite
too, and doesn’t border on inappropriate
like some other lines.

Colin Walker @colinwalker sm
That moment you find a bit of test code
in a dummy theme file and can't
remember what the heck it was for.

Cheri Baker @cheri m
Have you seen my list of Recommended
Books for Writers on Goodreads? £

22m

Charlie Sorrel @mistercharlie 3am

Newton, Bias Amp 2, Overcast privacy,
and other amazing apps of the week
cultofmac.com
Leo Laporte @lco 3sm
Why Regulators Should Approve the T-
Mobile/Sprint Deal - Tech.pinions
techpinions.com

Q

@ *

Mentions Favorites

profi

12:39 7

manton

Manton Reece @manton
| created Micro.blog. I'm a co-host of the
Core Intuition podcast.

https://manton.org/

208 Following

Manton Reece @manton h
(@mikeseb Not quite. | think 90°-ish.

Manton Reece @manton 16h

(@Zak @Ron | loved eWorld, especially all
the personality in the design and icons.
I'll get right to work on an importer.

Manton Reece @manton 20h

Nice walk this afternoon. Starting to feel
like summer in Austin.

Manton Reece @manton 200
(@retrophisch That's right. You can also
just add the RSS feed from Tumblr to

* Q &

Favorites Profile

OPS/images/ff6257ef3f.png
Aa O 66 @ B @ =

Text Photo Quote Link Chat Audio Video

OPS/images/7939f0d1cb.png
9:304

o1/ |5GE@)
< TestFlight

Timeline 4

Jack

@jack 4 minutes ago

@khurtwilliams | still have an X100T that |
rarely use, but | still want the new one.
Tilt screen and what should be faster
operation/focus could lure me.

DEWT
@dejus
The word for day 5 of the Micro.blog

photo challenge is “hide”. Here's Poppy

hidden under the stacked deck furniture
in our gazebo. #mbfeb

9 minutes ago

iy

- Micro.blog

10 miniites aan

E @) & 03

Timeline Mentions Discover More

9:30 7
<« TestFlight

i/ 5GE@)

£ Discover more I

Discover featured recent posts, from the
community, by their emoji tag.

Micro Monday
Discover new users recommended

by the community. Updated on a
Monday.

zm =

Books &
Reading

8 €0

Podcasts Movies
89 ST r;';; l
Music Video Games
(Y]

Timeline Mentions Discover More

OPS/images/c6af49b770.png
New stickers.

OPS/images/7e64da8391.png
AirDrop Messages Micro.blog Mail
Copy Photo @
Add to Shared Album @
Add to Album @
Duplicate

OPS/images/f35dbf6648.png
A

@keinan

@stoppableforce

A 1ETN

)

@bitdepth @twweaver @hollyhoneychurch

OPS/images/903d5b56f9.png
matt.blog Search

f \ matt.blog
@matt.blog

OPS/images/5e218ee372.png
Micro.blog Ul

Holo word

a Post

publishing HTML

Micro.blog hosting
Hugo and Nginx

L manton.org

External hosting

WordPress, etc.

downloading feeds

updating timeline

downloading feeds

boffosocko.com

updating timeline

Timeline

OPS/images/3dd2c8d5f3.png
[XN) manton_archive.bar

4613 posts (1303 uploads) www.manton.org Import

It's easy to be optimistic after a couple blowout wins, but love how this Spurs
team is playing. Climbing back into the play-in race, 2nd in the west for points
per game, 5th for point differential. Gotta stay competitive with Dejounte out
for COVID protocols this week. .

A little post-Christmas coding, updating the Mac app to support
importing .bar (blog archive) files. Probably won't release for a few days but
you can follow along in the GitHub history.

Finished reading: A Darker Shade of Magic by V. E. Schwab &

Hope everyone's having a nice day! Just posted the latest Core Intuition. ‘

There will be a IndieWeb pop-up session in February about personal libraries:
using alternatives to Goodreads, tracking books on your own site, and
common formats we can use.

OPS/images/8264cb94dc.png
manton
A Starting to get excited for IndieWebCamp Austin next month! If you're
interested in an open alternative to the big silos, | hope you'll join us. You can

register for $10.

2020-01-11 1:56 pm Reply Favorite Remove

OPS/images/64d82327cd.png
Posts on Micro.blog use **Markdown** for formatting and [links](https://micro.blog/). By

default it's a simple text box, to make starting a new post easy.

Preview Markdown reference 154 <) (o] Post

OPS/images/db9d1d27f6.png
Feed URL: https://mydomain.com/feed/|

Add Feed

OPS/images/5fc0025966.png
colinwalker
The renewed passion for writing has also rekindled a desire to tinker with the

workings and code behind the blog, which | wasn't expecting.

9:26 am Reply Favorite Conversation

zorn

& i Happy Monday everyone. Let's kick some ass this week and get some
pull requests posted.

9:17 am Reply Favorite

JezB
The Old and The New in Glasgow Merchant City jezbraithwaite.blog
5:09 am Reply Favorite

petebrown

After a week and a half of being very far away, there are a lot of great
aspects to being home, not the least of which is having predictably good
coffee.

5:02am Reply Favorite

OPS/images/c9ee7ceef6.png

OPS/images/0250d66273.png
twitter.com

facebook.com

. medium.com

instagram.com

OPS/images/bfbbe65f67.png
[XON) Import from Instagram

163 photos (3 selected) manton.micro.blog Import

OPS/images/70fa62acf7.png
:01

2

Sunlit

Chris Campbell
@bitdepth

Tree beside walking trail on a beautiful day.

3. Jack Baty
o @ack

S

New Post

Settings

Discover

Timeline

OPS/images/e8d608f86c.png
2:06 > ®)

Discover

@gesher @adders @bitdepth

@Cheri @robertbrook @JoshNicholas

@ChrisReed @Marty @walter

Timeline Discover Settings New Post

OPS/images/7732a61ebf.png
Search for featured posts, users by Micro.blog name, or full Mastodon username:

@someone@mastodon.social| Search

OPS/images/0c94d7c823.png
3 aaronpareckicom — 5 @ micro.blog

<link rel="webmention” ...>

OPS/images/f7e6a1a29d.png
URL

https://manton.micro.blog/feed.json

i

Disable Cross-posting

Cross-posting

© Disable @mantonsblog
@ Add Medium

® Add Mastodon

@ Add LinkedIn

O Add Tumblr

OPS/images/da26198009.png
Sign in with your domain

@ https://www.manton.org/

OPS/images/5d655de323.png
Email address

Get started

or continue with

© (0 (@ (o

Apple Expedia Facebook Google

OPS/images/51a9bd6263.png
{ Stories @ +

National Parks

2013-07-27

: I -

The Grand Canyon was as amazing as
everyone says. We didn't stay long — a
thunderstorm arrived as we did — but what
we saw was beautiful. Hope to be back one
day.

2013-08-13

We left Salt Lake City early in the morning
and drove to Arches. Had a nice picnic near
Balanced Rock, then walked around

OPS/images/fed2f670a2.png
Micro.blog can automatically save a copy of your new blog posts to the Internet Archive's
Wayback Machine.

Save new posts to Internet Archive

OPS/images/1593cd9546.png
Document Block X

Status & Visibility ~
Add t|t|e Visibility Public
Publish Immediately
This is a new microblog post in WordPress. o
Post Format
We're ignoring the title field. Gallery
. Link
D Stick to the Front P, IiEee
. . Quote
D Pending Review Standard
Video

Move to tr, Audio

OPS/images/8a2054d07c.png
9:429 wTm 9:474 S 9:514 il F @
< App Store < Drafts
& actions.getdrafts.com

Hello world.

& Mail .
Message
X Posted by agiletorto t update
Reminder Posttoa M .blog hosted account. time
running this action, you will need to provide an app
List in Reminders token generated from your profile at

0 Tested action & Trusted member

Print - Markdown

> o~ < I8 FEiol 1= Reminder in Fantastical

| We i Task in OmniFocus il

. script
qw e r t y u G P Send to Micro.blog

a s dif gh'j k!l
Move left A n. Generate tokens on the Mic

ntia

& 1z x ¢ vbnm ®)
Move right

123 space return

e ¢

Move cursor back bv word

OPS/images/fd4796c73d.png
Replying to: € hutaffe.blog

@hutaffe Wish they were available on Netflix in the United States too.
Here they'll be on HBO Max, which | think we'll get access to anyway
since we subscribe to HBO NOW. We own a bunch of Ghibli films but

it'll be great to have access to everything.

